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1 Introduction

Let Ω ⊂ C be a simply connected domain, z0 ∈ Ω, and let φ : D → Ω be a conformal mapping so that φ(0) = z0.

The harmonic measure of Ω at z0, ω : B(∂Ω)→ [0, 1], can be defined by

ω(E) := ω(z0, E; Ω) = λ1

(
φ−1
∗ (E)

)
,

where φ∗ denotes the boundary extension of φ and λ1 denotes the one dimensional Hausdorff measure on the torus,

normalized to that λ1(T) = 1 (see [29]).

In his celebrated paper [43], Makarov established that

dimω = inf dimH {K : ω(K) = 1} = 1 and dim ω = inf dimH {K : ω(K) > 0} = 1.

In this paper, we aim to explore the multifractal analysis of harmonic measure and rotation in arbitrary simply

connected domains. For a detailed discussion of the multifractal analysis, we refer the reader to [26]. This work

continues the analysis initiated in [45]. Our main goal is to extend the results of [45] to the rotational case and

provide proofs of some “folklore” results. In the process, we encountered a few minor surprises requiring new

techniques to handle, as well as a major new phenomenon (Theorem 2.2 and Theorem 2.3). This new phenomenon

necessitates using a new technique for “dual” fractal approximation (Section 5).

Let us now turn to a more careful informal description of the results. As before, let Ω be a simply connected

domain. The dimension mixed spectrum is a continuum of parameters, fΩ(α, γ), defined for all α > 0, γ ∈ R, which

characterizes the ”harmonic” dimension (i.e., dimension with respect to harmonic measure) of the boundary set with

a prescribed speed of rotation of Green lines and prescribed local dimension of the harmonic measure. In simple

terms, f(α, γ) is the dimension of the set of points

{
x ∈ ∂Ω : lim

δ→0

log(ω(B(x,δ)))
log(δ) = α, lim

δ→0

log(rho(x,δ))
log(δ) = γ

}
, where

rho is the rotation defined in section 2. The exact definition has different versions, involving lim sup or lim inf and

Hausdorff or Minkowski dimensions. These versions are often quite different, even for polygonal domains. However,

they have the same universal bounds. We refer the reader to Section 2 for more in-depth discussion.

Dimension mixed spectra provide a wealth of information about the geometry of the boundary of a planar domain.
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In particular, the spectra describe all possible local dimensions and rotation speeds, as well as the prevalent rotation

speed in the sense of Hausdorff measures of different dimensions.

The distortion mixed spectrum is the conformal map counterpart of the dimension spectrum. It is denoted by

dΩ(a, b), where a > 0 and b ∈ R. In simple terms, it is the dimension of the set ζ ∈ S1 for which |φ′(rζ)| grows

like
(

1
1−r

)a
, and exp(arg φ′(rζ)) grows like

(
1

1−r

)b
. Again, there are different variants of the definition involving

Minkowski and Hausdorff dimensions. See Section 2 for precise definitions.

Since the function log φ′(ζ) is a Bloch function, one can construct a Bloch martingale associated with it and

then apply the theory of large deviations (for the description of Bloch martingales, we referthe reader to [44], and

for the discussion of large deviations, we refer to [25]). Along these lines, the entropy function for the distortion

mixed spectrum is the integral mixed spectrum:

mΩ(z) = lim sup
r→1−

log
∫
rS1 |φ′z(ζ)|d|ζ|

log 1
1−r

.

Note that in the case of real z, this object is classical and has been extensively studied (for example, [45] and

[48]). We need to introduce the complex exponent here to reflect the properties of the rotation. Most of the classical

results can be easily carried out to the case of complex exponent. The values of the integral mixed spectrum for

real z correspond to the behavior of harmonic measure, and the purely imaginary exponents z can be considered

“rotational”.

It is worth noting that, due to the entropy relation mentioned earlier, the integral mixed spectrum and the

distortion mixed spectrum (to be precise, the Minkowski distortion spectrum) are related by a Legendre-type

transform:

mΩ(z) = sup
a,b

(dΩ(a, b) + aRe [z] + bIm [z]− 1)(1)

dΩ(a, b) = inf
z

(mΩ(z)− aRe [z]− bIm [z] + 1)(2)

As mentioned above, harmonic measure of a simply connected domain can be defined as the pushforward of the

normalized linear measure on the circle under conformal map (see [29] for more details), it is natural to relate the

boundary behaviour of the derivative of conformal map and the local dimension of harmonic measure.

Intuitively, one expects the relationship

dΩ(a, b) = (1− a)fΩ

(
1

1− a
,
−b

1− a

)
.

This relation indeed holds for domains with quasi-circular boundaries (see Theorem 2.1 for partial justification).

It is well-known that for all versions of the spectra there are examples (see [45]) with

dΩ(a, b) > (1− a)fΩ

(
1

1− a
,
−b

1− a

)
.
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In this paper, we provide examples of domains where opposite inequality holds (Theorem 2.2 and Theorem 2.3).

This phenomenon was not expected by experts in the field.

The multifractal spectra, which were defined earlier, have additional properties for domains with boundaries that

are invariant under a hyperbolic dynamical system, known as the “Jordan repellers”. Examples of such repellers

are the basin of attraction to infinity of a hyperbolic polynomial or a snowflake domain (also called Carleson

fractal). The multifractal spectra for Jordan repellers are thermodynamic objects and can be defined in terms of

the pressures of some potentials related to the dynamics on the boundaries and the dimensions of the corresponding

Gibbs measures. This allows us to apply the techniques of thermodynamic formalism to understand the relations

between the mixed spectra and their behavior. The Minkowski and Hausdorff versions of the spectra coincide,

and all the multifractal spectra for Jordan repellers are real analytic, exist as limits, and related by Legendre-type

transform. For more details, please refer to [45].

In Section 5, we provide a new proof of the “Fractal Approximation phenomenon”. We show that the universal

bounds for distortion and dimension spectrum for bounded domains can be obtained by considering only Jordan

repellers. Since, for these domains, all versions of the spectra agree and the dimension and distortion spectra are

related by Legendre-type transform, the same relation holds for the universal bounds on the spectra. We need to

study the fractal approximation for both dimension and distortion spectra because of the phenomenon established

in Theorem 2.3. We would also like to point out that carrying out the approximation required a refinement of the

classical lemma due to L. Carleson (Lemma 5.14).

2 Background, definitions, and results

For every a, b ∈ R we define the Minkowski distortion mixed spectrum of Ω as

dΩ(a, b) := lim
a′→a
b′→b

lim sup
r→1−

log (λ1 (La′,b′(r)))

log
(

1
1−r

) + 1,

where

La′,b′(r) :=

{
ζ ∈ ∂D, log |φ′(rζ)|

a′
> log

(
1

1− r

)
and

arg (φ′(rζ))

b′
> log

(
1

1− r

)}
,

arg being the branch of the argument of φ′ with Arg(φ′(0)) ∈ (−π, π].

We define the rotation of a domain, Ω, around a boundary point z by

rot(z, δ) := exp

(
inf

y∈∂Ωδ∩∂B(z,δ)
arg[z](y − z)

)
,

where Ωδ is the connected component of the set {y ∈ Ω, |y − z| > δ} containing z0, and the argument arg[z] is a

branch of the argument satisfying that arg[z](z0 − z) ∈ (−π, π].
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For every α, γ ∈ R we define the Minkowski dimension mixed spectrum of Ω as

fΩ(α, γ) = lim
η→0

lim sup
δ→0

logN(δ, α, γ, η)

log
(

1
δ

) ,

where N(δ, α, γ, η) is the maximal number of disjoint disks {B(zj , δ)} satisfying that

1. zj ∈ ∂Ω.

2. ∀j 6= k, B(zj , δ) ∩B(zk, δ) = ∅.

3. ω(B(zj , δ)) ∈ (δα+η, δα−η).

4. rot(zj , δ) ∈ (δγ+η, δγ−η).

While attempting the proof the authors encountered a problem- it is possible that every curve in the disk Bk

either carries a large portion of the harmonic measure or has a large enough diameter, but not both, and extending

the curve would either increase the harmonic measure by too much or make it too long. Such disks should be

counted in fact in a different smaller scale. To overcome this issue it en enough to assume that the domain is a

quasi-disk, which is the primary case, as we will later see (see Theorem 2.4).

In this note we will prove a theorem, originally proven by Makarov, showing that the Minkowski dimension

mixed spectrum is dominated by the Minkowski distortion mixed spectrum (with the correct parameter) if the

harmonic measure is doubling, and show it is not correct without some additional assumptions on the domain. In

fact, we generate an example showing that the local Hausdorff dimension is not always dominated by the Minkowski

dimension mixed spectrum. However, we will show that the universal counterparts do satisfy this relation.

Theorem 2.1 Let Ω ⊂ C be a quasi-disk. Then

dΩ(a, b) ≥ (1− a) fΩ

(
1

1− a
,
−b

1− a

)
.

The original version of this theorem was proved by Makarov in [45]. They overlooked the case where we ‘look

at the wrong scale’, i.e. when we work with disks where the main arc, which carries most of the harmonic measure,

has a very small diameter. An extension to Makarov’s version of this theorem was proven by Binder in [14].

Theorem 2.2 For every a ∈
(
0, 1

3

)
there exists a domain Ω ⊂ C whose boundary is a Jordan curve and has only

one cusp, satisfying that

dΩ (a) < (1− a) fΩ

(
1

1− a

)
.

Lastly, we define the function

f̃Ω(α) := lim
η→0+

dim
({
z,∃ {δk} ↘ 0, δα+η

k ≤ ω(B(z, δk)) ≤ δα−ηk

})
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In fact, it is not even the case that in general

dΩ

(
1− 1

α

)
≥ 1

α
f̃Ω (α)

as the following example shows:

Theorem 2.3 For every α > 1 there exists a domain Ω ⊂ C such that

dΩ

(
1− 1

α

)
<

1

α
f̃Ω (α) .

Finally, we will show that while the inequalities presented here are not true for every domain, they do hold for

their universal counterpart.

Theorem 2.4 1. F (α) := sup
Ω
s.c

fΩ(α) = F+(α) = sup
F IFS

f+
ΩF

(α) for all α > 0.

2. D(a) := sup
Ω
s.c

dΩ (a) = sup
F IFS

dΩF (a) for all a > 0.

In particular,

D

(
1− 1

α

)
=

1

α
F (α) .

3 The proof of Theorem 2.1

3.1 Auxiliary Results for the Proof

In this section we present all the required auxiliary definitions and results needed to prove Theorem 2.1.

3.1.1 Counting curves and distortion spectrum

The first subsection will relate the Miskowski distortion spectrum with a collection of curves.

Definition 3.1 For every r ∈ (0, 1) and a > 0 fixed we define by Γ (a, r) to be the maximal collection of disjoint

curves from the collection

{
γ ⊂ ∂Ω,∃A ⊂ T, λ1(A) = (1− r) , φ(A) = γ, and diam(γ) ≥ (1− r)1−a

}
, if a > 0

We then define the Minkowski curve-distortion spectrum by

dcurve(a) = lim sup
a′↘a

lim sup
r↗1

log (#Γ (a′, r))

log
(

1
1−r

) .

In a sense, if α = 1
1−a and 1− r = εα then these curves satisfy that the harmonic measure of each curve is εα and

its diameter is bounded from below (above) by ε if α > 1 (if α < 1).
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The first Lemma in this subsection shows that there is some correspondence between the Minkowski curve-

distortion spectrum, dcurve, and the Minkowski distortion spectrum d, and between the Minkowski curve distortion

spectrum and the universal Minkowski dimension spectrum, F .

Lemma 3.2 1. If a > 0, then for every simply connected domain, Ω, dΩ(a) ≤ dcurveΩ (a).

2. If a < 0, then for every simply connected domain, Ω, dΩ(a) ≤ (1− a)F
(

1
1−a

)
.

3. If a > 0 and Ω is a quasi-disk, then dΩ(a) = dcurveΩ (a).

Proof. The essence of the proof lies in the following observation:

Observation 3.3 Let φ : D → C be a conformal map and fix I ⊂ ∂D some arc with λ1(I) < 1
2 . Denote by ζI the

centre of the arc, I, and let zI = ζI (1− λ1(I)). Then

1.

dist(φ(zI), φ(I)) .Ω diam(φ(I)).

2. If Ω is a quasi-disk, and K is the smallest dilatation of the quasi-conformal extension of φ to the Riemann

sphere. Then for every z,

C(K) (1− |z|) |φ′(z)| ≤ diam(φ(I)) ≤ C(K)−1 (1− |z|) |φ′(z)| .

The proof is given in [29] exercises 8 on p. 153 for the first part, and on p. 216 for the second part.

The proof of 1: Let a′ > a, fix r close enough to 1, and let

La′(r) =

{
ζ ∈ ∂D, log |ϕ′(rζ)| > a′ log

(
1

1− r

)}
.

Let Γ = {Aj}Mj=1 denote the minimal collection of disjoint arcs in ∂D satisfying that diam(γ) = 1 − r while⋃M
j=1 2Aj ⊃ La′(r). For every j there exists ζ ′ ∈ 2Aj ∩ La′(r) 6= ∅, as {2Aj} forms a cover for La′(r). Let aj

denote the centre of the arc Aj . The function φ is conformal making log φ′ a Bloch function, therefore there exists

a uniform constant CΩ so that for all ζ ∈ 2Aj

|log |φ′(r · ζ)| − log |φ′(r · aj)|| ≤ CΩ,

and for every ζ ∈ 2Aj ∩ La′(r)

log |φ′(r · aj)| ≥ log |φ′(r · ζ)| − CΩ ≥ a′ log

(
1

1− r

)
− CΩ ≥

a′ − CΩ

log
(

1
1−r

)
 log

(
1

1− r

)
.

For every j let γj := φ(Aj), and note that, following Koebe’s distortion theorem combined with the first part of

Observation 3.3,

diam(γj) & |φ′(aj)| (1− |aj |) ≥
(

1

1− r

)a′− CΩ

log( 1
1−r )

−1

6



that is there exists another constant, which depends on Ω satisfying

diam(γj) ≥ (1− r)
1−a′+ C′Ω

log( 1
1−r ) .

Define a′′ := a′ − C′Ω
log( 1

1−r )
, then as long as r is close enough (depending on a′) a′′ > a and

diam(φ(Aj)) = diam(γj) ≥
(

1

1− r

)a′− CΩ

log( 1
1−r )

−1

= (1− r)a
′′−1

.

In particular,

M = number of curves γj ≤ #Γ (a′′, r) ,

implying that

dΩ (a) = lim sup
a′↘a

lim sup
r↗1

log (λ1 (La′(r)))

log
(

1
1−r

) + 1 = lim sup
a′↘a

lim sup
r↗1

log (2(1− r) ·M)

log
(

1
1−r

) + 1

≤ lim sup
a′↘a

lim sup
r↗1

log (#Γ (a′′, r))

log
(

1
1−r

) ≤ dcurve(a),

concluding the proof of 1.

The proof of 2: Note that for a < 0 the function a 7→ dΩ(a) is monotone increasing since if a′ < a then

|a′| > |a| and since (1− r) < 1 we get

|φ′(rζ)| ≤ (1− r)|a
′| < (1− r)|a|.

We will prove the theorem for a such that for all η > 0 we have dΩ(a − η) < dΩ(a). If this is not the case, there

exists a′ < a for which it does hold, and as α(a′) = 1
1−a′ is a monotone increasing function and f+

Ω is monotone

increasing, we will get that

F+(α(a)) ≥ F+(α(a′)) ≥ dΩ(a′) = dΩ(a).

We may therefore assume without loss of generality that for every η > 0 we have dΩ(a) > dΩ(a− η). Fix a′ > a

and δ0 > 0, and let η := |a− a′| and ε := 1
4 (dΩ(a′)− dΩ(a′ − 2η)) > 0. There exists r > r0 := 1 − δ

1
1−a′
0 large

enough so that

log (λ1(La′(r)))

log
(

1
1−r

) + 1 + ε > dΩ(a′) > dΩ(a′ − 2η) >
log (λ1(La′−2η(r)))

log
(

1
1−r

) + 1− ε.

Note that while it is possible that La′−2η(r) � (1 − r)1−dΩ(a′−2η) an inequality still holds as long as r is large

enough.

We partition T into n :=
⌈

1
1−r

⌉
and let Ij ⊂ ∂D be the minimal collection of such arcs with La′(r) ⊂ ]j2Ij . In

particular, for every j we have 2Ij ∩ La′(r) 6= ∅, implying that for every ζ ∈ Ij

|φ′(r · ζ)| ≤ C (1− r)|a|
′
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for some uniform constant C. Let J denote the collection of indices j so that for every ζ ∈ Ij , |φ′(r · ζ)| >
1
C (1 − r)|a

′|+2η. Since a′ − 2η = a − η then dΩ(a′ − 2η) < dΩ(a). Note that while it is possible that La′−2η(r) �

(1− r)1−dΩ(a′−2η) an inequality still holds as long as r is large enough, and so

#J =

λ1

(
]
j∈J

Ij

)
1
n

≥ n · λ1 (La′(r) \ La′−2η(r)) ≥ n
(

(1− r)1+ε−dΩ(a′) − (1− r)1−ε−dΩ(a′−2η)
)

= n(1− r)1+ε−dΩ(a′)
(

1− (1− r)dΩ(a′)−dΩ(a′−2η)−2ε
)
≥ 1

2
(1− r)ε−dΩ(a′),

for r large enough, by the way ε was defined.

For every j ∈ J denote by zj = (1− r)ζj where ζj is the centre of Ij . Note that if j 6= k then

|φ(zj)− φ(zk)| & ρ(zj , zk)(1− r) |φ′(zj)| & |zj − zk| (1− r)|a
′|+2η ≥ (1− r)1+|a′|+2η

.

In particular, there exists c > 0 uniform so that

B
(
φ(zj), c (1− r)1+|a′|+2η

)
∩B

(
φ(zk), c (1− r)1+|a′|+2η

)
= ∅.

Let δ := c (1− r)1+|a′|+2η
. Then the collection {Bj} := {B (φ(zj), δ)} is a collection of pairwise disjoint disks and

for every j,

ω(z0, Bj ;φ(rD)) = λ1(φ−1(Bj)) & λ1((1− r)1+2ηIj) ∼ (1− r)1+2η ∼ δ
1+2η

1+|a′|+2η

since if |z − zj | < (1− r)1+2η, then

|φ(z)− φ(zj)| =
∫ zj

z

|φ′(ζ)|d|ζ| . (1− r)|a
′| (1− r)1+2η

= (1− r)1+|a′|+2η.

In particular

Nφ(rD)

(
1 + 2η

1 + |a′|+ 2η
, δ, η

)
≥ #J ≥ 1

2
(1− r)ε−dΩ(a′).

Taking first r ↗ 1 and then a′ ↘ a we see that

(1− a) sup
Ω s.c

f+
Ω

(
1

1− a

)
≥ (1− a) sup f+

φ(rD)

(
1

1− a

)
≥ dΩ(a).

Finally, since this is true for all simply connected Ω, this definitely holds for the supremum, D(a).

The proof of 3: In light of 1, we only need to show that dcurve(a) ≤ d(a). In fact, all we need to show is that

for every γ ∈ Γ(a′, r) there exists zγ satisfying |zγ | = r and |φ′(zγ)| ≥ (1− r)1−a′′
for some a′′ > a. However, in

light of the second part of Observation 3.3, taking zγ := r · ζγ for some ζγ ∈ Aγ , and repeating the same argument

as done in the proof of 1 concludes the proof. The only thing one needs to note is that

|ζγ − ζγ′ | ≥ (1− r) ,

as they both sit in the centre of Aγ and Aγ′ .
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3.1.2 Rotation

The rest of the lemmas in this section will reveal intriguing properties of the rotation. We will use the notation

presented in the section 2. The first Lemma shows that one can estimate the rotation using integration over curves

in Ω:

Lemma 3.4 Let w ∈ ∂Ω and δ > 0. For every curve γ ⊂ Ω connecting y ∈ ∂B(w, δ) ∩ Ωδ with z0, we have∣∣∣∣Im [∫
γ

1

ξ − w
dξ

]
− log (rot(w, δ))

∣∣∣∣ ≤ 3π.

Proof. Let γ0 ⊂ Ω be a curve connecting z0 with w. Denote by γδ the connected component of γ0 \B(w, δ) which

contains z0, and let yδ be the point where γδ ends. Then

0 =

∫
γ0−γ0

1

ξ − w
dξ =

∫
γ0

1

ξ − w
dξ −

(∫
γδ

1

ξ − w
dξ +

∫
γ0\γδ

1

ξ − w
dξ

)

=⇒ 0 = Im
[∫

γ0

1

ξ − w
dξ

]
−

(
Im
[∫

γδ

1

ξ − w
dξ

]
+ Im

[∫
γ0\γδ

1

ξ − w
dξ

])

= arg[w](z0 − w)− Im
[∫

γδ

1

ξ − w
dξ

]
− arg[w](yδ − w).

Since the branch of the argument is chosen so that arg[w](z0 − w) ∈ (−π, π] we get that

Im
[∫

γδ

1

ξ − w
dξ

]
− π ≤ arg[w](yδ − w) ≤ Im

[∫
γδ

1

ξ − w
dξ

]
+ π.

Next, for every y ∈ ∂B(w, δ) ∩ Ω, let γy ⊂ Ω be a curve connecting z0 and y ∈ ∂Ωδ ∩ ∂B(w, δ), and let σ ⊂

∂B(w, δ)∩Ωδ be chosen so that the domain bounded by γδ + σ− γy, which is contained in Ωδ, does not contain w.

Then, since the mapping ξ 7→ 1
ξ−w is holomorphic in the domain bounded by γδ + σ − γy

0 =

∫
γδ+σ−γy

1

ξ − w
dξ =

∫
γδ

1

ξ − w
dξ +

∫
σ

1

ξ − w
dξ −

∫
γy

1

ξ − w
dξ

⇒ Im
[∫

γδ

1

ξ − w
dξ

]
− 2π ≤ Im

[∫
γy

1

ξ − w
dξ

]
≤ Im

[∫
γδ

1

ξ − w
dξ

]
+ 2π,

as the rotation along σ is bounded by the rotation of a circle, which is 2π. Overall, we conclude that∣∣∣∣∣Im
[∫

γy

1

ξ − w
dξ

]
− arg[w](yδ − w)

∣∣∣∣∣ ≤
∣∣∣∣∣Im

[∫
γy

1

ξ − w
dξ

]
− Im

[∫
γδ

1

ξ − w
dξ

]∣∣∣∣∣
+

∣∣∣∣Im [∫
γδ

1

ξ − w
dξ

]
− arg[w](yδ − w)

∣∣∣∣ ≤ 3π.

In particular the argument above holds for y∗ ∈ ∂B(w, δ) ∩ Ω which satisfies rot(w, δ) = exp
(
arg[w](y

∗ − w)
)
.

The next thing we would like to know is some kind of continuity of the rotation when moving the disc B(w, δ).

As we saw in the previous lemma, estimating the rotation is related to estimating integrals over curves. We will

first need a decomposition description of curves:
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Proposition 3.5 Let Γ be a closed curve so that there exist Γ1,Γ2 non-self intersecting curves so that Γ = Γ1 ∪ Γ2

and Γ1 ∩ Γ2 is precisely the set of points where Γ intersects itself. We orient Γj so that Γ is a closed curve. Then

there exists closed simple curves {γk} satisfying that

1.
⋃N
k=1 γk = Γ.

2.
⋃
i6=j

[γi ∩ γj ] = Γ1 ∩ Γ2, which is the set of points where Γ intersects itself.

3. For every k for every j ∈ {1, 2} we have γk

∣∣∣∣
Γj

has the same orientation as Γj.

Proof. Given an intersection point of Γ1 with Γ2 there are two pieces of Γ = Γ1∪Γ2 directed towards the intersection

point, and two directed outwards. Because Γ1,Γ2 are not self intersecting, then one of the pieces directed towards

the point belongs to Γ1 and the other belongs to Γ2 and the same holds for the pieces directed outwards. We say

two pieces are ‘companion pieces’ if one is directed towards the intersection point and the other is directed outwards

and also one belongs to Γ1 and the other to Γ2 (see Figure 1).

Companion pieces

Companion pieces

Figure 1: Companion pieces. The grey curve is Γ1, and the black one is Γ2.

We will describe an algorithm to create the curves γ1, · · · γN . We begin at any intersection point of Γ1 and Γ2.

We choose a curve leaving the intersection point, and follow it according to the orientation assigned to it. At every

intersection point, we enter via one curve and we leave the intersection point on its companion curve. Since the

curve Γ is closed, at some point we will hit the curve we are creating. The first time encounter an intersection point

already in our curve, we will remove from the curve everything that preceded the first visit to that point creating

a simple loop, denoted γ1. Because we removed a closed loop, and the initial curve was closed, we are left with a

collection of closed loops, but this time with less intersection points; Every intersection point we used to construct

the first curve, where we entered through one curve and left the intersection point via a companion curve, gives rise

to an oriented closed curve composed of parts of Γ1 and Γ2 like in the original assumption of the proposition. We

end up with a collection of closed curves, each composed of a union of two simple curves. We may now apply the

algorithm to each one of them to generate γ2, · · · , γN .

10



(a) Example of a curve. (b) After one step. (c) After final step.

Figure 2: This figure describes a decomposition of curve composed of a simple curve and its translation.

The following lemma shows that if the center of the target ball, B(w, δ) is perturbed a little bit, then the rotation

does not change by much:

Lemma 3.6 For every ξ, w ∈ ∂Ω if |ξ − w| < δ, then f

|log (rot(ξ, δ)))− log (rot(w, δ)))| ≤ 10π.

Proof. Let Ω1 denote the connected component of Ω \ (B(ξδ), B(w, δ)). Let γw, γξ ⊂ Ω1 be two curves connecting

z0 with ∂B(w, δ) and ∂B(ξ, z) respectively. Let σ ⊂ ∂B(w, δ) ∪ ∂B(ξ, δ) be so that the domain bounded by

Γ := γw + σ− γw does not contain either points. Since B(w, δ)∩B(ξ, δ) 6= ∅, every curve either circles both points

or circles none of them. Now in the domain bounded by Γ both functions z 7→ 1
z−ξ and z 7→ 1

z−w are holomorphic

and therefore by the Decomposition Proposition, Proposition 3.5,∫
Γ

1

z − ξ
dz = 0 =

∫
Γ

1

z − w
dz,

and in particular ∣∣∣∣∣∣∣Im
∫
γξ

1

z − w
dz

− Im

∫
γw

1

z − w
dz


∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Im
∫
σ

1

z − w
dz

∣∣∣∣∣∣ ≤ 4π.

The last piece of the puzzle we need is to observe that since γw, γξ ⊂ Ω1 then the number of times each of these

curves circles ξ has to be equal to the number of times it circles w for otherwise, the curve separates between the

two points, which is impossible by the way Ω1 was defined. Using the interpretation of the imaginary part of the

integral we see that

Im

∫
γξ

1

z − w
dz

 = Im

∫
γξ

1

z − ξ
dz

 .

11



Overall, using Lemma 3.4 and the estimates above, we see that

|log (rot(B(ξ, δ)))− log (rot(B(w, δ)))| ≤

∣∣∣∣∣Im
[∫

γξ

1

z − ξ
dz

]
− log (rot(ξ, δ))

∣∣∣∣∣+

∣∣∣∣Im [∫
γw

1

z − w
dz

]
− log (rot(w, δ))

∣∣∣∣
+

∣∣∣∣∣Im
[∫

γξ

1

z − ξ
dz

]
− Im

[∫
γw

1

z − w
dz

]∣∣∣∣∣
≤ 6π +

∣∣∣∣∣Im
[∫

γξ

1

z − ξ
dz

]
− Im

[∫
γξ

1

z − w
dz

]∣∣∣∣∣+

∣∣∣∣∣Im
[∫

γξ

1

z − w
dz

]
− Im

[∫
γw

1

z − w
dz

]∣∣∣∣∣
≤ 6π + 0 +

∣∣∣∣∣∣Im
∫
σ

1

z − w
dz

∣∣∣∣∣∣ ≤ 10π.

The last lemma we present in this auxiliary subsection is kind of a mean-value theorem for holomorphic functions.

While such a theorem is not correct in the original form, a modification of it does hold:

Claim 3.7 Let I, ζI , zI , φ be as in Observation 3.3, i.e., I ⊂ ∂D is an arc with λ1(I) < 1
2 , ζI is the centre of

the arc I, zI = ζI (1− λ1(I)), and φ : D → Ω is a conformal map. Then there exists a constant K = KΩ, which

depends on the domain Ω alone, and there exists η ∈ I so that∣∣∣∣arg[φ(η)]

[
φ(zI)− φ(η)

zI − η

]
− arg[φ(η)] [φ′(zI)]

∣∣∣∣ ≤ KΩ.

The proof of this proposition heavily relies on ideas from the proof of McMillan’s twist theorem (see, for example,

p.142 in [48]).

Proof. Following Lemma 6.19 in [48], with z = zI , I, there exists a point η ∈ I so that

|φ(zI)− φ(η)| ≤ K1 · (dist(φ(zI), ∂Ω) + diam(φ(I)) ≤ K2 · diam(φ(I)),

following Observation 3.3. Let A denote the non-euclidean segment connecting zI and η, then∫
A

|φ′(ξ)|d|ξ| = |φ(zI)− φ(η)| ≤ K2 · diam(φ(I)).

Let α ∈ A be so that ρh(α, zI) = 1, where ρ denotes the hyperbolic distance, and define the non-euclidean segment

Ã := {w ∈ A, ρ(w, zI) ≥ 1}. Then following [48, Cor. 1.5], and Koebe’s distortion theorem, for every z ∈ Ã

|φ(z)− φ(zI)| ≥ |φ′(zI)|
(

1− |zI |2
) tanh(ρ(z, zI))

4
≥ dist(φ(zI), ∂Ω) · tanh(1)

4
=
dist(φ(zI), ∂Ω)

K3
,

and therefore ∫
Ã

d
∣∣arg[φ(η)] [φ(z)− φ(zI)]

∣∣ ≤ ∫
Ã

|φ′(z)|
|φ(z)− φ(zI)|

d|z| ≤ K3

dist(φ(zI), ∂Ω)

∫
Ã

|φ′(z)|d|z|(3)

≤ K3

dist(φ(zI), ∂Ω)

∫
A

|φ′(z)|d|z| ≤ K3

dist(φ(zI), ∂Ω)
·K2 · dist(φ(zI), ∂Ω) = K2 ·K3.
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Now define the map ψ : D× D→ R by

ψ(z, w) :=


arg[φ(η)]

(
φ(z)−φ(w)

z−w

)
, z 6= w

arg[φ(η)] (φ′(z)) , z = w

.

This map is continuous on D× D. In addition, by the triangle inequality

|ψ(zI , zI)− ψ(η, zI)| ≤ |ψ(zI , zI)− ψ(α, zI)|+ |ψ(α, zI)− ψ(η, zI)| = S1 + S2.

To bound S1, we use Exercise 1.3(4) in [48]

S1 = |ψ(zI , zI)− ψ(α, zI)| =
∣∣∣∣arg[φ(η)] (φ′(zI))− arg[φ(η)]

(
φ(α)− φ(zI)

α− zI

)∣∣∣∣ ≤ 8ρ(zI , α) +
π

2
≤ 10.

To bound S2 we will use (3),

S2 = |ψ(α, zI)− ψ(η, zI)| =
∫
Ã

d
∣∣arg[φ(η)] [φ(z)− φ(zI)]

∣∣ ≤ K2 ·K3.

Over all, we get that∣∣∣∣arg[φ(η)]

[
φ(zI)− φ(η)

zI − η

]
− arg[φ(η)] [φ′(zI)]

∣∣∣∣ = |ψ(η, zI)− ψ(zI , zI)| ≤ S1 + S2 ≤ KΩ,

for some uniform constant KΩ which depends on the domain alone.

3.1.3 The main Lemma

Lemma 3.8 Let Ω ⊂ C be a quasidisk. For every disk B = B(ζ, δ) centred at ζ ∈ ∂Ω, there exists z ∈ (1− ω(B))T

satisfying

(HM)
δ

ω(B) · log2
(

1
ω(B)

) . |φ′ (z)| . δ

ω(B)
(R)

∣∣φ′−i (z)
∣∣ ∼ rot(B).

where the constants depend on the doubling constant of the measure and the domain.

Proof. The proof relies on Koebe’s distortion theorem combined with the second part of Observation 3.3 for the

harmonic measure and Lemme 3.7 for the rotation.

Let B be a disk. Note that by Carleson’s lemma, there exists a continuum of diameter δ, β ∈ ∂Ω∩2B, satisfying

that ω(β) ≥ ω(B)

log2( 1
ω(B) )

. However, since the harmonic measure is doubling, by looking at the continuation of β in

3B we may assume that diam(β) ∈ (δ, 6δ) and

ω(B)

log2
(

1
ω(B)

) ≤ ω(β) ≤ Cω(B).

Let φ : D→ Ω be a Riemann map, and let z := zβ (1− ω(B)) where zβ is the centre of the arc φ−1(β). Note that

ρ(z, zβ (1− ω(β))) ∼ |ω(B)− ω(β)|
min (ω(B), ω(β))


& 1

. log2
(

1
δ

) .
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Since log φ′ and a Bloch function, we see that

log |φ′(z)| ∼ log |φ′(zβ (1− ω(β))| (1 + o(1)) ∼ dφ(zβ (1− ω(β)))

1− |zβ (1− ω(β))|
(1 + o(1)) ∼ diam(φ(β))

ω(β)
(1 + o(1)) .

following the second part of Observation 3.3, since Ω assumed to be a quasi-disk.

To show the second half of the lemma, we will first show that

rot(B)

|φ′−i(z)|
∼Ω 1.

Let η ∈ φ−1(β) be the point from Claim 3.7, satisfying that |φ(η)− ζ| < diam(φ(β)) while∣∣∣∣arg[φ(η)]

[
φ(z)− φ(η)

z − η

]
− arg[φ(η)] [φ′(z)]

∣∣∣∣ ≤ KΩ.

We need to relate the argument arg[φ(η)] [φ(z)− φ(η)] with rot(φ(η), δ) as it is not necessarily the case that φ(z) ∈

∂B(φ(η), δ).

Following Observation 3.3,

|φ(z)− φ(η)| ≤ dist(φ(z), β) + diam(β) ≤M · δ,

for some constant M = M(Ω), which depends on the domain alone. Let Mk := 2M · diam(β)
δ ∼Ω 1. Then there

exists a sequence of tangential disks {B`}Mk

`=1 so that B` = B(ξ`, δ) with ξ1 = φ(η) while φ(z) ∈ ∂BMk
. Let

σ` ⊂ ∂B` ∪ ∂B`+1 be so that
Mk∑̀
=1

σ` is a curve in Ω connecting ∂B1 ∩Ω with φ(z), let γφ(η), γφ(z) ⊂ Ω be two curves

connecting z0 with ∂B1 and ∂BMk
respectively. Note that the domain bounded by the curves γφ(z)− γφ(η) +

Mk∑̀
=1

σ`

does not contain the point φ(η). Then, a similar argument to the one presented in Lemma 3.6 shows that

∣∣log (rot(φ(η), δ))− arg[φ(η)] [φ(z)− φ(η)]
∣∣ ≤

∣∣∣∣∣∣Im
[∫

γφ(η)

1

ξ − φ(η)
dξ

]
− Im

∫
γφ(η)+

Mk∑̀
=1

σ`

1

ξ − φ(η)
dξ

∣∣∣∣∣∣+ 5π

≤ 5π +

Mk∑
`=1

∣∣∣∣Im [∫
σ`

1

ξ − φ(η)
dξ

]∣∣∣∣ ≤ π (Mk + 5) ,

since the change in the argument along each σ` is bounded by 2π. Next,

∣∣log (rot(B))− arg[φ(η)] [φ′(z)]
∣∣ ≤ |log (rot(B))− log (rot(φ(η), δ))|

+
∣∣log (rot(φ(η), δ))− arg[φ(η)] [φ(z)− φ(η)]

∣∣
+

∣∣arg[φ(η)] [φ(z)− φ(η)]− arg[φ(η)] [φ′(z)]
∣∣ .Ω 1,

as the first summand is bounded following Lemma 3.6, the second summand is bounded by the computation above,

and the third summand is bounded by Claim 3.7. Over all, we get that

∣∣φ′−i (z)
∣∣ ∼ rot(B),

concluding the proof.
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Remark 3.9 Note that if 3B′ ∩ 3B = ∅, are two disks of the same harmonic measure, then by definition,

ρ(z, z′) ∼ |z − z
′|

ω(B)
∼ 1.

In particular, the points are distinct.

3.2 The proof of Theorem 2.1

Proof. It is enough to show that for every ε > 0 there exists a sequence {rk} ↗ 1 so that for every k large enough,

log (λ1 (La−ε,b−ε(rk)))

log
(

1
1−rk

) ≥ (1− a) fΩ

(
1

1− a
,
−b

1− a

)
− 1− ε.

Fix ε > 0 and let η ∈
(
0, ε·α3

)
and {δk} be so that lim

k→∞
log(N(δk,α,γ,η))

log
(

1
δk

) ≥ fΩ(α, γ)−ε ·α. For every k there exists

a collection of disjoint disks
{
Bkj
}N(δk,α,γ,η)

j=1
of radius δk satisfying properties 1-4 in the definition of N(δk, α, γ, η).

By excluding at most a linear portion of the disks in the collection, we may assume without loss of generality that

3Bkj ∩ 3Bkν = ∅ for every j 6= ν. Following Lemma 3.8, if the harmonic measure of Ω is doubling, then for every j

there exists zj ∈ (1− δαk )T so that (HM) and (R) hold. In fact, those two hold for z′j =
(
1− ω(Bkj )

)
ζj , however,

ρ(zj , z
′
j) ∼

∣∣zj − z′j∣∣
min

{
ω(Bkj ), δαk

} ≤ δηk ·
∣∣ω(Bkj )− δαk

∣∣
δα−2η
k

= δ3η
k

∣∣∣∣∣1− ω(Bkj )

δα−2η

∣∣∣∣∣ ≤ δ3η
k ,

therefore ∣∣log φ′(zj)− log φ′(z′j)
∣∣ . C

for some uniform constant C.

Note that in this case, if δk is small enough (depending on η)

δ1−α+2η
k ≤ δ

CΩδαk log2
(

1
δαk

) ≤ |φ′ (zj)| ≤ CΩ
δk
δαk
≤ δ1−α−2η.

Similarly

δγ+2η
k ≤ rot(B)

CΩ
≤
∣∣φ′−i (z)

∣∣ ≤ CΩrot(B) ≤ δγ−2η
k .

We divide (1− δαk )T into N := dδ−αk e arcs of equal length, and denote this collection Pk. Note that for every

j 6= ν we have ρ(zj , zν) ∼ 1 so by excluding at most a linear portion of the disks, the points {zj} belong to different

arcs in this collection.

Given r0 we set rk = 1 − δαk , for δk small enough so that rk > r0, and note that for every arc I ∈ Pk if zj ∈ I

for some j, then for every z ∈ I

|φ′ (z)| ∈
(
δ1−α+3η
k , δ1−α−3η

k

)
, eArg(φ

′(z)) =
∣∣φ′−i (z)

∣∣ ∈ (δγ+3η
k , δγ−3η

k

)
.

Next,

δ1−α±3η
k = (δαk )

1− 1
α±

3η
α = (1− rk)

1− 1
α±

3η
α and δγ±3η

k = (δαk )
γ
α±

3η
α = (1− rk)

γ
α±

3η
α
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implying that

log |φ′ (z)|

log
(

1
1−rk

) ∈ (1− 1

α
− 3η

α
, 1− 1

α
+

3η

α

)
= (a− ε, a+ ε)

Arg (φ′ (z))

log
(

1
1−rk

) ∈ (γ
α
− 3η

α
,
γ

α
+

3η

α

)
= (b− ε, b+ ε) .

Then

λ1 (La−ε,b−ε(rk)) ≥ (1− rk) # {zj} & (1− rk)N(δk, α, γ, η) & (1− rk) · δ−(fΩ(α,γ)−ε·α)
k

= (1− rk)
1− fΩ(α,γ)

α +ε
,

implying that

log (λ1 (La−ε,b−ε(rk)))

log
(

1
1−rk

) + 1 ≥ fΩ(α, γ)

α
− ε

concluding the proof.

4 Counter Examples

In this section we will prove two counter examples. The first shows that it is not always the case that the Minkowski

distortion spectrum dwarfs the Minkowski dimension spectrum. The second one shows that the Minkowski distortion

spectrum does not even necessarily dominate the dimension of the set of of points with the correct corresponding

lower density. We begin by proving auxiliary results that will be used in both examples.

4.1 Auxiliary Results for the examples

4.1.1 A General Construction

All the examples we present begin with a smooth shape like a disk or a smoothed out square (will be defined below),

to generate a sequence of smooth domains that converge to the domain we are after. In both cases we use various

‘tubes’. We begin by describing this ‘smoothing’ mechanism and the tubes.

Let R be a rectangle of length `k and width ωk < `k. We define the ‘smoothing’ of R as the result of the

following process- remove the 4 triangles at the corners of R and replace each triangle by a quarter of a disk of

radius ωk
2 (see Figure 3). We will denote the resulting shape by S(R) and refer to it as ‘the tube of R’. We will

apply a similar process when attaching two tubes to one another or to a domain.

When we connect two ‘tubes’ a ‘smoothed’ cube forms their connection. This ‘smoothed’ cube has edge length

ωk and if one rescales it the resulting shape is exactly the same, giving us uniform bounds on the harmonic measure

of parts of this cube (see Figure 4).
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R S(R)

Ω0

R

Ω0

S(R)

Figure 3: Smoothing of rectangles: The left figure shows the smoothing of one rectangle. The right figure shows the smoothing of a

rectangle connected to a domain.

T

T ′

ωk

3ωk

3

1

3
2

rescaling...

Figure 4: Connecting two tuned we get a smoothed out cube. This cube is a rescaling of the same object.

4.1.2 Estimates of harmonic measures

We shall prove a general estimate on the harmonic measure of curves inside a chain of tubes. Naturally this estimate

will be a relative estimate conditioned on the probability to get to the ‘entrance’ of the tube.

Lemma 4.1 Let Ω be a simply connected domain that contains a sequence of tubes T1, T2, · · · , Tm of scale k,

connected to one another, i.e., Tj and Tj+1 share a smoothed cube. We allow Tm to be shorter but require it to be

longer than ωk. We denote by J ⊂ ∂T1 the ‘entrance’ to the sequence of tubes, of width ωk, and define Ω0 as the

connected component of Ω \ J that contains z0 (see Figure 5).
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Given γ ⊂
⋃N
j=1 ∂Tj we denote by `(γ) the length of γ and define ‘the height of γ’ in the chain of tubes, h(γ), by

h(γ) =


dist(γ, J) , γ ∩ ∂T1 6= ∅

(j − 1) · `k + dist(γ, ∂Tj−1) ,∀ν ≤ j − 1, γ ∩ ∂Tν = ∅ and γ ∩ ∂Tj 6= ∅
.

Let γ be a curve so that there exists an arc A ⊂ T with φ(A) = γ and λ1(A)� `(γ). Then

ω(z0, γ; Ω) .


eπ·m exp

(
−π · h(γ)

ωk

)
· ω(z0, J ; Ω0) , `(γ) ≥ ωk

100

`(γ)
ωk
· eπ·m exp

(
−π · h(γ)

ωk

)
· ω(z0, J ; Ω0) , otherwise

,

and

ω(z0, γ; Ω) &


e−π·m exp

(
−π · h(γ)

ωk

)
· ω
(
z0,

1
2J ; Ω0

)
, `(γ) ≥ ωk

100

`(γ)
ωk
· e−π·m exp

(
−π · h(γ)

ωk

)
· ω
(
z0,

1
2J ; Ω0

)
, otherwise

,

where the constants are all numerical constants.

Proof. Assume that h(γ) > ωk and denote by Jγ the interval beginning at height h(γ)− ωk orthogonal to ∂Ω, and

let ζγ be the midpoint of this interval (see Figure 5 below). We define the auxiliary domain Ωγ as the connected

component of Ω \ Jγ containing z0. Note that Ω0 ⊂ Ωγ ⊂ Ω, and that Ωγ \ Ω0 is a union of tubes (see Figure 5).

J

Ω
T1

Tm

γ

Jγ
z0

Figure 5: The horizontal lines depict the domain Ω0, the slanted lines depict the domain Ωγ . Lastly, γ and J are marked as thick

gray lines.
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The map z 7→ ω(z, γ; Ω) is harmonic in Ω and therefore in Ωγ

ω(z0, γ; Ω) =

∫
∂Ωγ

ω(ζ, γ; Ω)dω(z0, z; Ωγ) =

∫
Jγ

ω(ζ, γ; Ω)dω(z0, z; Ωγ).

Note that if `(γ) & ωk then for every ζ ∈ Jγ we have ω(ζ, γ; Ω) ∼ 1 by Beurling. Otherwise, we will consider the

upper and lower bounds for ω(ζ, γ; Ω), ζ ∈ Jγ separately.

Upper Bound: For every ζ ∈ Jγ , we will get an upper bound by using extremal length. As we need an upper

bound on the harmonic measure, we need to bound from below λ(ζ, γ). Let σ be the line connecting ζ and ∂Ω \ γ

orthogonal to ∂Ω but in the opposite direction to where γ lies. Let xγ be the beginning of the curve γ and define

the metric

ρ(z) :=
1

|z − xγ |
· 1B(xγ ,ωk)\B(xγ ,`(γ)(z).

It is non-negative and well defined. Next, the curve connecting xγ to the point ζ by a straight line is in the collection

Γ(σ, γ) and the function z 7→ 1
|z−xγ | · 1B(xγ ,ωk)\B(xγ ,`(γ)(z) attains all the values between 1

ωk
and 1

`(γ) once (since

the distance between ζ and the curve is at least ωk), and therefore

L2(Γ(σ, γ), ρ) ≤

(∫ ωk

`(γ)

1

t
dt

)2

= log2

(
ωk
`(γ)

)
.

On the other hand, note that for disks centered at xγ , B(xγ , R) for every 0 < r < R we have λ1 (Ω ∩B(xγ , r)) ≤ π ·r

(even smaller if we include one of the semi-cubes) and therefore

A(Ω, ρ) =

∫
Ω∩(B(xγ ,wk)\B(xγ ,`(γ))

ρ(z)dm(z) ≤ π
∫ ωk

`(γ)

r · 1

r2
dr = π log

(
ωk
`(γ)

)
,

implying that

λ(ζ, γ) ≥ L2(Γ(σ, γ), ρ)

A(Ω, ρ)
≥

log2
(
ωk
`(γ)

)
π log

(
ωk
`(γ)

)
and in turn for every ζ ∈ Jγ ,

ω(ζ, γ; Ω) ≤ 8

π
exp (−πλ(ζ, γ)) ≤ 8

π
· exp

−π · log2
(
ωk
`(γ)

)
π · log

(
ωk
`(γ)

)
 ∼ `(γ)

ωk
.

Overall,

ω(z0, γ; Ω) .
`(γ)

ωk
· ω(z0, Jγ ; Ωγ).

Lower Bound: Note that by inclusion and Harnack’s inequality,

ω(z0, γ; Ω) =

∫
Jγ

ω(ζ, γ; Ω)dω(z0, z; Ωγ) ≥
∫
1
2Jγ

ω(ζ, γ; Ω)dω(z0, z; Ωγ)

∼ ω(ζγ , γ; Ω) · ω
(
z0,

1

2
Jγ ; Ωγ

)
≥ ω(ζγ , γ;Rγ) · ω

(
z0,

1

2
Jγ ; Ωγ

)
∼ `(γ)

ωk
· ω
(
z0,

1

2
Jγ ; Ωγ

)
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where Rγ ⊂ Ω is a rectangle of width ωk and length in (ωk, 2ωk) (depending on the location of γ with respect to

the connected smoothed cubes).

We conclude that 

ω(z0, γ; Ω) ∼ ω(z0, Jγ ; Ωγ) , `(γ) ≥ ωk
100

ω(z0, γ; Ω)


. `(γ)

ωk
· ω(z0, Jγ ; Ωγ)

& `(γ)
ωk
· ω
(
z0,

1
2Jγ ; Ωγ

) , otherwise

.

It is left to bound ω(z0, Jγ ; Ωγ) from above and ω
(
z0,

1
2Jγ ; Ωγ

)
bellow. As before, the map z 7→ ω(z, γ; Ωγ) is

harmonic in Ωγ and therefore in Ω0. Then

ω(z0, Jγ ; Ωγ) =

∫
∂Ω0

ω(ζ, Jγ ; Ωγ)dω(z0, ζ; Ω0) =

∫
J

ω(ζ, Jγ ; Ωγ)dω(ζ0, z; Ω0).

Upper Bound: For every ζ ∈ J , we will get an upper bound by using extremal length. As we need an upper

bound on the harmonic measure, we need to bound from below λ(ζ, Jγ). Let σ be the line connecting ζ and ∂Ωγ \Jγ

along J . Using the serial rule, if Γj := {µ ∩ Tj ;µ ∈ Γ} where Tj is the j’th tunnel, then

λΩγ\σ(Γ) ≥
m∑
j=1

λTj (Γj) ≥
h(γ)−m · ωk

ωk
=
h(γ)

ωk
−m.

as the tunnels Tj become disjoint once we remove the smoothing cubes connecting them, while the extremal length

of a rectangle is known. This implies that for every ζ ∈ J

ω(ζ, Jγ ; Ωγ) ≤ eπ·m · exp

(
−π · h(γ)

ωk

)
.

Overall, we see that

ω(z0, Jγ ; Ωγ) =

∫
J

ω(ζ, Jγ ; Ωγ)dω(ζ0, z; Ω0) ≤ 8

π
· eπ·m exp

(
−π · h(γ)

ωk

)
· ω(z0, J ; Ω0).

Lower Bound: Let ζJ denote the center of the interval J and let Cγ be the connected component of Ωγ \(
J ∪ ζJ +

[
−ωk2 ,

ωk
2

]2)
which contains Jγ in its boundary. By inclusion and, using Harnack’s inequality,

ω

(
z0,

1

2
Jγ ; Ωγ

)
=

∫
∂Ω0

ω

(
ζ,

1

2
Jγ ; Ωγ

)
dω(z0, ζ; Ω0) =

∫
J

ω

(
ζ,

1

2
Jγ ; Ωγ

)
dω(z0, ζ; Ω0)

≥ 1

4
· ω
(
z0,

1

2
J ; Ω0

)
· ω
(
ζJ ,

1

2
Jγ ; Ωγ

)
≥ 1

4
· ω
(
z0,

1

2
J ; Ω0

)
· ω
(
ζJ ,

1

2
Jγ ;Cγ

)
.

To bound the later, we will use extremal length, copying the proof done for rectangles. Note that if σ∩(Cγ \ Ω0) 6= ∅

then λCγ\σ(Γ(σ, γ)) becomes smaller. As we are looking for an upper bound, and we are taking supremum over all

such curves, we may consider only curves which do not intersect (Cγ \ Ω0).

Let ρ be any metric on Cγ . Fix a point w ∈ ∂Cγ \ ∂Ωγ , and denote by γw the curve running parallel to the

boundary of Ωγ starting from w and ending on Jγ . Then for every such w there exists µ ∈ Γ(σ, γ) so that µ ⊂ γw.
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Then,

L2(Γ(σ, γ), ρ) =

 inf
µ∈Γ(σ,γ)

∫
µ

ρ(ζ)d |ζ|

2

≤
(∫

γw

ρ(ζ)d|ζ|
)2

≤ (h(γ) +m · ωk) ·
∫
γw

ρ2(ζ)d|ζ|

by Cauchy-Schwarts inequality. Integrating along J we get

ωk · L2(Γ(σ, γ), ρ) = ωk ·

 inf
µ∈Γ(σ,γ)

∫
µ

ρ(ζ)d |ζ|

2

≤
∫ ωk

0

(∫
γw

ρ(ζ)d|ζ|
)2

dw

≤ (h(γ) +m · ωk)

∫
Ωγ\Ω0

ρ2(ζ)dm(ζ) = (h(γ) +m · ωk)A(Ωγ \ Ω0
k, ρ) ≤ (h(γ) +m · ωk)A(Cγ , ρ).

This implies that for every σ connecting ζk with ∂Cγ \ Jγ outside of (Cγ \ Ω0),

λCγ\σ(Γ(σ, γ)) ≤ h(γ) +m · ωk
ωk

.

Lastly, using symmetry we see that

ω

(
ζJ ,

1

2
Jγ ; Ωγ

)
≥ ω

(
ζJ ,

1

2
Jγ ;Cγ

)
≥ exp (−πλ(ζJ , γ)) ≥ e−π·m · exp

(
−πh(γ)

ωk

)
.

Combining everything together the proof follows.

The case where h(γ) < ωk should be discussed. However, copying the proof estimating ω(ζ, γ; Ω) for ζ ∈ J

concludes the proof of this case as well.

The second lemma in this subsubsection gives a lowers bound for the minimal length of some curves. The idea

is that since these components are smooth, then if ε is too small then ω(γ) ∼ `(γ)� εβ .

Lemma 4.2 Let ε be so that there exists γ ∈
⋃m
j=1 ∂Tj so that ω(γ) = εβ and `(γ) ≥ ε. If `(γ) < min

{
ωk
100 , ω(z0, J ; Ω0)

1
β

}
,

then

ε &

(
ω
(
z0,

1
2J ; Ω0

)
ωk

· exp

(
−π ·m

(
`k
ωk

+ 1

))) 1
β−1

.

Proof. Recall that the longest height inside components in
⋃m
j=1 ∂Tj is bounded by m · `k. Following the estimate

done in Lemma 4.1, we see that for some uniform constant C > 1

εβ = ω(γ) ≥ `(γ)

C
·
ω
(
z0,

1
2J ; Ω0

)
ωk

· e−π·m exp

(
−π · h(γ)

ωk

)
≥ ε

C
·
ω
(
z0,

1
2J ; Ω0

)
ωk

· e−π·m exp

(
−π · h(γ)

ωk

)
≥ ε

C
·
ω
(
z0,

1
2J ; Ω0

)
ωk

· exp

(
−π ·m

(
`k
ωk

+ 1

))
,

implying that

ε ≥

(
ω
(
z0,

1
2J ; Ω0

)
C · ωk

· exp

(
−π ·m

(
`k
ωk

+ 1

))) 1
β−1

concluding the proof.
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4.2 Example 1: Dimension Spectrum vs. Distortion Spectrum

In this section we will prove Theorem 2.2. We will construct for every a ∈ (0, 1) a domain, Ω, satisfying that

(1− a) fΩ

(
1

1−a

)
≥ 1−a

2 while dΩ (a) < 1−a
2 showing that Theorem 2.2 does not hold in general and that the

additional requirement the Ω is a quasi-disk is necessary.

4.2.1 The Construction:

Let z0 := − 1
2 , let {nk} ⊂ N be a subsequence of the natural numbers that will be chosen later. For every k we let

δk = 2−2nk , `k :=
√
δk, ωk =

√
δk

ν·nk = 2−nk
ν·nk for some ν > 1 that will be chosen later as well. We define the sequence

of intervals:

Ik :=
{

(x, y), x ∈
[√

δk − ωk,
√
δk

]
, y = −

√
δk

}
Uk :=

(x, y), x ∈
[√

δk − ωk,
√
δk

]
, y = δk

√
1−

δ
2( 1

1−a−1)
k

4

 .

Let `b be a smooth line connecting the origin with ∂D satisfying that
⋃∞
k=1 Ik ⊂ `b and let `u be a smooth line

connecting the origin with ∂D satisfying that
⋃∞
k=1 Uk ⊂ `u and `b ∩ `u = ∅. We denote by Ω0 the set whose

boundary is composed of `b, `u and ∂D which contains z0 (see Figure 6), and we choose n1 small enough so that for

every j,

`(Ij)

2
≤ ω(z0, Ij ; Ω0) ≤ 2`(Ij).

I1
I2

I3I4

U1U2U3U4
z0 = − 1

2

Figure 6: The initial set Ω0. The grey lines at the top are Uk, the grey lines at the bottom are Ik.

For every k we denote by Tk the smoothing of Ik ×
[
−
√
δk, 0

]
, i.e., Tk = S

(
Ik ×

[
−
√
δk, 0

])
, and let Ω =

Ω0 ∪
⋃∞
k=1 Tk. For every interval I we will denote by t · I the interval of length t · `(I) concentric with I, and for

every k we let Ωk := Ω\Tk, and let Jk denote the straight part of the upper edge of Tk, i.e. Jk = ∂Tk∩{Im [z] = 0}.
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4.2.2 The proof

Following lemma 3.2 part 1, it is enough to bound the number of curves in Γ (a′, r) for all a′ > a and r with (1− r)

small enough. Given r we define ε := (1− r)1−a′
. We will bound the number of such curves in each scale, k. Fix k

and let us look at three cases:

Case 1- ε > 2−nk : For every k,

`(Tk) = ωk + 2
√
δk ≤ 3 · 2−nk ,

therefore for every k fixed

`
(
∂Ω ∩ 2−nkD

)
≤ `

([
0, 2−nk+1

])
+

∞∑
j=k+1

`(Tj) ≤ 2−nk+1 +

∞∑
j=k+1

3 · 2−nj ≤ 7 · 2−nk+1 < 2−nk ,

if nk is chosen so that 7 · 2−nk < 2−nk−1 . We get that the number of curves of diameter at least ε in ∂Ω∩ 2−nkD is

at most 2, i.e. if ε > 2−nk then the set ∂Ω ∩ 2−nkD is covered by at most two disjoint curves of length at least ε.

Case 2- ωk
nk
≤ ε < 2−nk : Then the number of disjoint curves in Γ(a′, r) in the tube Tk is bounded by

`(∂Tk)

ε
≤ 2 (`k + ωk)

ωk
nk

. ν · n2
k . ν · log2

(
1

ε

)
.

Case 3- ε < wk
nk

: Following Lemma 4.2,

ε &

(
ω
(
z0,

1
2Ik; Ω0

)
ωk

· exp

(
−π ·m

(
`k
ωk

+ 1

))) 1
a′−1

∼ exp

(
− π · ν
a′ − 1

· log

(
1

`k

))
= `

π·ν
a′−1

k

since {nk} were chosen so that ω
(
z0,

1
2Ik; Ω0

)
∼ `(Ik) = ωk, and m = 1. This implies that the number of disjoint

curves in Γ(a′, r) in the tube Tk is bounded by

`(∂Tk)

ε
.
`k
ε

. ε
a′−1
π·ν −1.

Let k1 := max {k, ε < 2−nk} , k2 := max
{
k, ε < wk

nk

}
, then there exists a constant C so that

#Γ(a′, r) ≤ 2 +

k2∑
j=1

# {γ ∈ Γ(a′, r), γ ⊂ Tj disjoint curves}

≤ 2 +

k1∑
j=1

# {γ ∈ Γ(a′, r), γ ⊂ Tj disjoint curves}+

k2∑
j=k1+1

# {γ ∈ Γ(a′, r), γ ⊂ Tj disjoint curves}

. k1 · ν · log2

(
1

ε

)
+

k2∑
j=k1+1

`k
ε
· 1{

`
π·ν
a′−1
j ≤Cε

} ≤ k1 · log2

(
1

ε

)
+ (k2 − k1) · ε

β−1
π·ν −1 ≤ log2

(
1

ε

)
· ε

a′−1
π·ν −1

for ε numerically small enough.

Following lemma 3.2 we conclude that

dcurveΩ (a) = lim sup
a′↘a

lim sup
r↗1

log (#Γ (a′, r))

log
(

1
1−r

) ≤ lim sup
a′↘a

lim sup
r↗1

log (#Γ (a′, r))

a′ · log
(

1
ε

)
≤ lim sup

a′↘a
lim sup
r↗1

log
(

log2
(

1
ε

)
· ε a

′−1
π·ν −1

)
a′ · log

(
1
ε

) =
1 + 1

π·ν −
a′

π·ν
a′

= (1− a′)
(

1 +
1

π · ν

)
− 1

π · ν
<

1− a
2

,
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if ν is small enough (depending on a).

It is left to bound fΩ

(
1

1−a

)
from bellow. Fix k and let

{
zkj
}Mk

j=1
be the maximal collection of points on Jk

satisfying that for every i 6= j, |zi − zj | > 2δk. Then

1. The discs B
(
zkj , δk

)
are disjoint.

2. By the way `u was defined, for every j, ω
(
B
(
zkj , δk

))
∼ length(Uk ∩B(zkj , δk) ∼ δ

1
1−a
k .

We conclude that for every η there exists k large enough so that N
(
δk,

1
1−a , η

)
≥Mk. On the other hand

Mk ≥
4
5 · ωk
2δk

=
2 ·
√
δk

ν·nk
5δk

&
1

√
δk log

(
1
δk

) .
This implies that

fΩ

(
1

1− a

)
= lim
η→0

lim sup
δ→0

log
(
N
(
δ, 1

1−a , η
))

log
(

1
δ

) ≥ lim
k→∞

log(Mk)

log
(

1
δk

) ≥ 1

2
,

concluding the proof of Theorem 2.2.

4.3 Example 2: Minkowski distortion spectrum vs. Hausdorff dimension

4.3.1 The Construction:

4.3.1.1 The set of density: In this subsection, we will show that for every α ∈
(
1, 3

2

)
and for every c ∈ (1, α)

there exists a set Cα of dimension 1
α , a domain Ω, a sequence of scales, {δk} ↘ 0, and a sequence of errors, {ηk} ↘ 0

so that for every z ∈ Cα and every k we have

δ
α
c +ηk
k ≤ ω(z0, B(z, δk); Ω) ≤ δ

α
c−ηk
k

however,

dΩ

(
1− c

α

)
≤ dcurveΩ

(
1− c

α

)
<

c

α2
≤ c

α
dH (Cα) .

Throughout this section we will use the notation ak ∼ bk if

lim
k→∞

log(ak)

log(bk)
= 1.

For every sequence {nk} ⊂ N we define the α-Cantor set in the following inductive way:

Step 0: Let C0 = [0, 1], C0 := {[0, 1]}.

Step 1: Split the interval C0 into 2n1 subintervals of equal length, take every forth interval I and denote by Iα the

interval beginning at the same point at I of length `(Iα) := `(I)α. We denote the collection of intervals be C1 and

define the set C1 =
⋃

Iα∈C1

Iα. The set C1 is composed of 2n1−2 intervals of length 2−α·n1 each.

Step k: Split every interval I ∈ Ck−1 into 2nk subintervals, take every forth interval and define the collection Ck to
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be all the intervals Iα that originated from Ck−1, and the set Ck :=
⋃

Iα∈Ck
Iα. The set Ck is composed of 2

k∑
j=1

(nj−2)

intervals of length 2
−α

k∑
j=1

nj
composing the collection Ck. For brevity define Nk :=

k∑
j=1

nj .

We then define by Cα :=
⋂∞
k=1 Ck. It is a well define subset of the interval [0, 1].

Observation 4.3 The set Cα defined above has dimension 1
α .

4.3.1.2 The domain Ω: As in the previous example, we will construct the set Ω as a monotone, this time

decreasing, limit of sets Ωk. We begin with the set Ω0 := S
(
[−1, 1]2

)
\ [0, 1].

For every k we let `k := 2−c·Nk and ωk := `k

ν·log
(

1
`k

) where ν > 0 will be chosen at the very end of the proof to be

a small constant.

Step 1: For every I ∈ C1 we place a cubic annulus of outer edge-length `1 and inner edge-length `1 − w1 such

that I is at the bottom of the outer cube, distance `1
4 from the right hand border of the annulus and trim the

annulus at the end of the interval I, and leave a gate of width ω1 at the entrance (see Figure 7).

I

ℓ1

w1

Figure 7: Step 1 of the construction.

Step k: For every I ∈ Ck we place a cubic annulus of outer edge-length `k and inner edge-length `k−ωk such that

I is at the bottom of the outer cube, distance `k
4 from the right hand border of the annulus and trim the annulus

at the end of the interval I and leaving only a small gate of width ωk at the entrance (see Figure 8). Denote the

connected components of ∂Ωk \ ∂Ωk−1 by Cjk, we have 2nk such components inside each copy Cjk−1. We choose nk

large enough so that the entire annulus fits inside the tube about the parent interval of I in step k − 1.

We define Ωk be the connected component of Ωk−1 \
⋃2Nk

j=1 ∂C
j
k, which contains z0. Then Ωk ⊆ Ωk−1, and

therefore Ω :=
⋂∞
k=1 Ωk is well defined and non empty, as it includes z0.
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parent of I

I

ℓk

wk

I

ℓk

wk

I

ℓk

wk

I

ℓk

wk

Figure 8: Step k of the construction. The thick gray line is the parent interval of all the I’s from step (k − 1).

On every step k we smooth-out the boundary like in the previous counter example so that if nk is chosen large

enough, then for every curve γ ⊂ ∂Ωk−1 with `(γ) < `k we have

`(γ)1+ηk ≤ ω(γ) ≤ `(γ)1−ηk ,

where ηk are chosen so that α
c > 1 + ηk and {ηk} ↘ 0.

Lastly, as Ω is a simply connected set, we shall denote by φ : D→ Ω the conformal map, which maps D onto Ω.

Recall that λ1 almost surely, φ can be extended to ∂D.

Note that if we set δk := `k
4 + 5 · 2−α·Nk then for every z ∈ Cα we have that

ω(z0, B(z, δk); Ω) ∼ ω(z0, B(z, δk) \ ∂Ck; Ω) ∼ `(B(z, δk) \ ∂Ck) ∼ 2−α·Nk ,

implying that

δ
α
c +ηk
k ≤ ω(z0, B(z, δk); Ω) ≤ δ

α
c−ηk
k

as stated above.

4.3.2 The proof

In light of Lemma 3.2 part 1, the goal now is to bound the number of curves in the collection Γ (a′, r) for every

a′ > a = 1− c
α and every r with (1− r) small enough.

Fix a′ > a and r, and let ε := (1− r)1−a′
. Define kε be so that `kε+1 ≤ ε < `kε . Then, for every j ≤ kε − 1

every curve γ ⊂ ∂Ωj of length at least ε contains a curve γ′ of length exactly ε < `kε which satisfies that

ω(γ) ≥ ω(γ′) ≥ `(γ′)1+ηk = ε1+ηk � (1− r) ,
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I

ℓk

wk

Figure 9: The smaller disk has radius ≥ `k
4

but it picks up a very small harmonic measure. The gray line while having small length,

∼ 2−α·Nk , is what dominates the harmonic measure.

by the way we chose nk, and ηk. This implies that for such ε for every γ ∈ Γ (a′, r), the intersection of γ with ∂Ωj

must have length at most (1− r) � (1− r)1−a′
as a′ > 0, and therefore at most two curves will be contained in

∂Ωj and we will count it there.

On the other hand, for every j ≥ kε + 1 for every curve γ ⊂ ∂Ωj \ ∂Ωkε of length at least ε, by using Lemma

4.2, with m = 4,

ω1−ηk
k+1 ≥ ε

1
1−a′ = ω(γ) &

(
ωηkk exp

(
−4π

(
`k
ωk

+ 1

))) 1
a′

≥
(
`
ηk(1+o(1))
k exp

(
−4π · ν log

(
1

`k

)
(1 + o(1))

)) 1
a′

≥ `
1
a′ (1+o(1))(ηk+4π·ν)

k

which is impossible if nk+1 is chosen large enough. We see that for such r for every γ ∈ Γ (a′, r), the intersection of

γ with ∂Ωj \ ∂Ωkε must intersect ∂Ωkε and therefore it is enough to count it there.

It is left to bound how many such curves are in ∂Ωkε \ ∂Ωkε−1. We will first bound the number of ‘long’ curves,

curves with `(γ) ≥ ωk
100 . However, like in the first example, since `k

ωk
∼ log

(
1
`k

)
we see that the number of such

curves is (up to multiplication by a constant) log
(

1
`k

)
.

To bound the number of ‘short’ curves, we will use the calculation done for the second case,

(1− r) = ω(γ) ≥ · · · & `
1
a′ (1+o(1))(ηk+4π·ν)

k ⇒
log
(

1
`k

)
log
(

1
1−r

) ≥ 1

a′ (4π · ν + ηk)
(1− o(1)) .

This implies that

dcurveΩ (a) = lim sup
a′↘a

lim sup
r↗1

log (#Γ (a′, r))

log
(

1
1−r

)

≤ lim sup
a′↘1− c

α

lim sup
r↗1

log
(

2Nk
(

log
(

1
`k

)
+ `k

(1−r)1−a′

))
log
(

1
1−r

) ≤ lim sup
a′↘1− c

α

lim sup
r↗1

log

(
`
1− 1

c
k

(1−r)1−a′

)
log
(

1
1−r

) (1 + o(1))

=
1− 1

c
α
c

lim sup
a′↘1− c

α

1− lim sup
r↗1

log
(

1
`k

)
(1− a′) log

(
1

1−r

) (1− o(1))

 ≤ c− 1

α

(
1−

α
c − 1

4π · ν

)
<

c

α2
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as long as ν > 0 is chosen small enough depending on α and c (in fact, by choosing ν small we can make this as

small as we wish). This concludes the proof of Theorem 2.3.

5 Approximations

5.1 Thermodynamical Multifractal formalism

5.2 Approximating with polygons

Observation 5.1 It is enough to show:

(1) F+(α) = sup
F IFS

f+
ΩF

(α) where F+(α) := sup
Ω

f+
Ω (α).

(2) sup
F IFS

dΩF (a) = sup
Ω

dΩ (a) for all a > 0.

Proof. Recall that f(α) = min {f−(α), f+(α)} therefore F (α) ≤ min {F+(α), F−(α)} ≤ F+(α). If F+(α) =

sup
F IFS

f+
ΩF

(α), then

sup
F IFS

fΩF (α) ≤ F (α) ≤ F+(α) = sup
F IFS

f+
ΩF

(α).

However, for finite iterated functions systems, f+
ΩF

(α) = f−ΩF (α), implying that

F (α) = F+(α) = sup
F IFS

f+
ΩF

(α).

Next, recall that for iterated function systems, Carleson’t estimate, Lemma 5.14, shows that the harmonic

measure of ΩF is doubling, hence satisfies the requirements of Theorem 2.1. Then

F (α) = F+(α)
by (1)
= sup

F IFS
fΩF (α)

for IFS
Thm 2.1= sup

F IFS
α · dΩF

(
1− 1

α

)
by (2)

= sup
Ω

α · dΩ

(
1− 1

α

)
,

concluding the proof.

Theorem 5.2 Let η > 0 and Ω0 ⊆ C be any bounded symmetric simply connected domain. Let φ0 : D → Ω0 be a

Riemann mapping sending 0 to z0 with |φ′0(0)| = 1. Let n ∈ N be large enough (depending on Ω0 and η) and define

φ(z) := φ0

((
1− 1

n

)
z
)

and Ω1 := φ(D). Divide T into n arcs of equal length, and let {γk} be the image of these

arcs under φ.

Given a sub-collection
{
γκj
}m
j=1

yours to choose there exists a collection of disks covering the boundary of a

horizontally symmetric polygon, P , satisfying that

1. (a) For every disk in the collection, D, #
{
B,B ∩ 3

2D 6= ∅
}

= 3.

(b) For every disk in the collection, D, ∂P ∩D is a line segment.

(c) The disks intersecting the real axis and their neighbours have radius 1
n4 .
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2. There exists a partition of the collection of disks, P = {Pk}, where Pk is associated with the curve γk and for

at least half of the elements in the collection
{
γκj
}m
j=1

the associated collection contains

(a) a disk with ω(z0, D;P ) ≥ 1
2n1+4η , and r(D) < diam(γk).

(b) a disk with ω(z0, D;P ) ≤ 2
n1−2η , and r(D) > diam(γk)1+η.

where r(D) denotes the radius of the disk D.

The proof of the theorem will have three main parts-

1. Modify the boundary of Ω1 on some part of the collection
{
γκj
}m
j=1

.

2. Show that this modification, does not change much the harmonic measure of at least half of the elements in

the collection
{
γκj
}

.

3. Cover the boundary of the approximation by disks to create a polygon, and show they satisfy the requirements

of the Theorem.

5.2.1 Step 1: The construction:

Let {zk} denote the endpoints of the arcs in the partition of T into n arcs of equal length. Note that for every k,

ω(z0, γk; Ω1) = ω(0, φ−1(γk);D) =
1

n
.

We cover the curve γκj with disjoint sub-curves of harmonic measure between 1
n1+η and 2

n1+η (if the last curve has

harmonic measure less than 1
n1+η we re-define the second to last curve to be their union). There are at most

ω(z0, γκj ,Ω1)
1

n1+η

=
1
n
1

n1+η

= nη,

such curves, and in particular, one of these sub-curves has diameter greater than diam(γκj ) · n−η, denote its

endpoints zκj ≤ aj < bj ≤ zκj+1. Let γ̃κj denote the curve obtained by replacing this sub-curve with the line

segment [φ(aj), φ(bj)], and let Ωj1 be the domain obtained from Ω1 by replacing γκj with γ̃κj . We then define Ω2

as the domain obtained by replacing γκj with γ̃κj for all 1 ≤ j ≤ m. The boundary of Ω2 is not self intersecting,

see Claim 5.8 below.

5.2.2 Step 2: The harmonic measure of half of the elements
{
γκj
}

does not change much:

Lemma 5.3 At least half of the curves in the collection
{
γκj
}m
j=1

satisfy that ω(z0, γ̃k; Ω2) ∈
(

1
n1+2η ,

1
n1−2η

)
.
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Proof. For every 1 ≤ j ≤ m and ` ∈ N we define the collections

M+
` (j) :=

{
ν; 1−

ω(z0, γκj ; Ων1 ∩ Ω1)

ω(z0, γκj ; Ω1)
∈
[
2−`−1, 2−`

)}
, M−` (j) :=

{
ν;
ω(z0, γκj ; Ων1 ∪ Ω1)

ω(z0, γκj ; Ω1)
− 1 ∈

[
2−`−1, 2−`

)}
D+
` (j) :=

{
ν; 1− ω(z0, γκν ; Ωj1 ∩ Ω1)

ω(z0, γκν ; Ω1)
∈
[
2−`−1, 2−`

)}
, D−` (j) :=

{
ν;
ω(z0, γκν ; Ωj1 ∪ Ω1)

ω(z0, γκν ; Ω1)
− 1 ∈

[
2−`−1, 2−`

)}
.

In a sense, M±` (j) is the collections of all curves that disturbed the harmonic measure of the j’th sub-curve by

a factor of 2−`, and the collection D±` (j) is the collection of continua that the modification to the j’th sub-curve

disturbs by a factor of 2−`. Note that, by definition,

(4) ν ∈M`(j)
± ⇐⇒ j ∈ D`(ν)±.

We will base our proof on two observations;

Observation 5.4 1. If
∞∑̀
=1

2−`#M`(j)
+ < 1− 1

nη then ω(z0, γ̃κj ; Ω2) ≥ 1
n1+2η .

2. If
∞∑̀
=1

2−`#M`(j)
− < n−η then ω(z0, γ̃κj ; Ω2) ≤ 1

n1−2η .

Proof. Given a sequence of numbers i1, · · · , iν ∈ {1, 2, · · · ,m} we define by Ωi1i2···iν the domain obtained from Ω1

by replacing γκi` with γ̃κi` for all 1 ≤ ` ≤ ν. We denote by Ω−j the domain Ω2 where γ̃κj is replaced with γκj .

By definition of Ω−j ,

ω(z0, γκj ; Ω−j ∩ Ω1) = ω(z0, γκj ; Ω1)−
∑
ν 6=j

(
ω(z0, γκj ; Ω12···ν ∩ Ω1)− ω(z0, γκj ; Ω12···(ν+1) ∩ Ω1)

)
.

We begin by noting that

ω(z0, γκj ; Ω12···ν ∩ Ω1)− ω(z0, γκj ; Ω12···(ν+1) ∩ Ω1) ≤ ω(z0, γκj ; Ω1)− ω(z0, γκj ; Ων+1
1 ∩ Ω1),

since on ∂Ω12···ν the left hand side is equal to zero and the right hand side is non-negative by inclusion, while on

[φ(aν+1), φ(bν+1)], the inequality becomes

ω(z0, γκj ; Ω12···ν ∩ Ω1) ≤ ω(z0, γκj ; Ω1),

which holds, again, due to inclusion. Using this inequality we get

ω(z0, γκj ; Ω−j ∩ Ω1) ≥ ω(z0, γκj ; Ω1)−
∑
ν 6=j

(
ω(z0, γκj ; Ω1)− ω(z0, γκj ; Ων+1

1 ∩ Ω1)
)

≥ ω(z0, γκj ; Ω1)

(
1−

∞∑
`=1

2−`#M+
` (j)

)
≥ 1

n

(
1−

(
1− 1

nη

))
=

1

n1+η
,

as we assumed that
∞∑̀
=1

2−`#M+
` (j) < 1− 1

nη .

It is left to show that if ω(z0, γκj ; Ω−j ∩Ω1) ≥ 1
n1+η then ω(z0, γ̃κj ; Ω2) ≥ 1

n1+2η . Let ηj = ∂ (Ω2 ∩ Ω1)∩ γκj (see

Figure 10). Intuitively, this is the boundary of Ω1 between φ(aj) and φ(bj) where the domain is convex, therefore
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when replacing γκj with γ̃κj we end up making the domain larger. Note that the map ζ 7→ ω(ζ, γκj ; Ω−j ∩ Ω1) is

harmonic in Ω2 ∩ Ω1. Then, following the maximum principle,

ω(z0, γκj ; Ω−j ∩ Ω1) ≤ ω(z0,
(
γ̃κj ∩ ∂ (Ω2 ∩ Ω1)

)
∪ ηj ; Ω2 ∩ Ω1).

γκj

φ(aj) φ(bj)

Ω1 Ω2

γ̃κj
φ(aj) φ(bj)

Ω2 ∩ Ω1

φ(aj) φ(bj)

Ω2 ∪ Ω1

ηj

ξj

Figure 10: The sets Ω1,Ω2 their union and intersection.

On the other hand, by Beurling projection theorem, for every ζ ∈ ηj we have ω(ζ, γ̃κj ; Ω2) & c for some uniform

constant c ∈ (0, 1), implying that

ω(z0, γ̃κj ; Ω2) =

∫
∂Ω2∩Ω1

ω(ζ, γ̃κj ; Ω2)dω(z0, ζ; Ω1 ∩ Ω2)

= ω(z0, γ̃κj ∩ ∂ (Ω2 ∩ Ω1) ; Ω1 ∩ Ω2) +

∫
ηj

ω(ζ, γ̃κj ; Ω2)dω(z0, ζ; Ω1 ∩ Ω2)

≥ c · ω(z0,
(
γ̃κj ∩ ∂ (Ω2 ∩ Ω1)

)
∪ ηj ; Ω2 ∩ Ω1) ≥ c · ω(z0, γκj ; Ω−j ∩ Ω1) ≥ c · 1

n1+η
≥ 1

n1+2η
,

if δ is numerically small enough, concluding the proof of the first part.

To prove the second part, we apply exactly the same argument, where intersections are replaces with unions

and ≥ inequalities are replaces with ≤.

———————————————— NOT TO INCLUDE IN PAPER: ————————————————

By definition of Ω−j ,

ω(z0, γκj ; Ω−j ∪ Ω1) = ω(z0, γκj ; Ω1) +
∑
ν 6=j

(
ω(z0, γκj ; Ω12···(ν+1) ∪ Ω1)− ω(z0, γκj ; Ω12···ν ∪ Ω1)

)
.

We begin by noting that

ω(z0, γκj ; Ω12···(ν+1) ∪ Ω1)− ω(z0, γκj ; Ω12···ν ∪ Ω1) ≥ ω(z0, γκj ; Ων+1
1 ∪ Ω1)− ω(z0, γκj ; Ω1),
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since on ∂Ω1 \ γκν+1 the left hand side is non-negative by inclusion, and the right hand side is zero, while on γκν+1 ,

the inequality becomes

ω(z0, γκj ; Ω12···ν+1 ∪ Ω1) ≥ ω(z0, γκj ; Ων+1
1 ∪ Ω1),

which holds, again, due to inclusion. Using this inequality we get

ω(z0, γκj ; Ω−j ∩ Ω1) ≤ ω(z0, γκj ; Ω1) +
∑
ν 6=j

(
ω(z0, γκj ; Ων+1

1 ∪ Ω1)− ω(z0, γκj ; Ω1)
)

≤ ω(z0, γκj ; Ω1)

(
1 +

∞∑
`=1

2−`#M−` (j)

)
≤ 1

n

(
1 + n−η

)
=

2

n1−η ,

as we assumed that
∞∑̀
=1

2−`#M+
` (j) < n−η.

It is left to show that if ω(z0, γκj ; Ω−j ∪ Ω1) ≤ 1
n1−η then ω(z0, γ̃κj ; Ω2) ≤ 1

n1−2η . Let ξj = γ̃κj ∩ Ω1. Note that the

map ζ 7→ ω(ζ,
(
γκj ∪ γ̃κj

)
\ (Ω1 ∪ Ω2) ; Ω2 ∪ Ω1) is harmonic in Ω−j ∪ Ω1. Then, following the maximum principle,

ω(z0, γκj ; Ω−j ∪ Ω1) ≥ ω(z0,
(
γκj ∪ γ̃κj

)
\ (Ω1 ∪ Ω2) ; Ω2 ∪ Ω1).

On the other hand, by Beurling projection theorem, for every ζ ∈ ξj we have

ω(ζ,
(
γκj ∪ γ̃κj

)
\ (Ω1 ∪ Ω2) ; Ω2 ∪ Ω1) = ω(ζ, γ̃κj \ Ω1; Ω2 ∪ Ω1) ≥ c

for some uniform constant c ∈ (0, 1), implying that

ω(z0,
(
γκj ∪ γ̃κj

)
\ (Ω1 ∪ Ω2) ; Ω2 ∪ Ω1) =

∫
∂Ω2

ω(ζ, γ̃κj \ Ω1; Ω2 ∪ Ω1)dω(z0, ζ; Ω2)

≥ ω(z0, γ̃κj \ Ω1; Ω2) +

∫
ξj

ω(ζ, γ̃κj \ Ω1; Ω2 ∪ Ω1)dω(z0, ζ; Ω2)

≥ c · ω(z0, γ̃κj ; Ω2).

Combining these bounds together we see that

ω(z0, γ̃κj ; Ω2) ≤ 1

c
ω(z0,

(
γκj ∪ γ̃κj

)
\ (Ω1 ∪ Ω2) ; Ω2 ∪ Ω1) ≤ 1

c
ω(z0, γκj ; Ω−j ∪ Ω1) ≤ 1

c
· 2

n1−η ≤
1

n1−2η

if δ is numerically small enough, concluding the proof of the second part.

Observation 5.5
∞∑
`=1

2−`#D+
` (j) ≤ 4

nη
,

∞∑
`=1

2−`#D−` (j) ≤ 2.

Proof. Recall that by definition of the collections
{
D+
` (j)

}
, if ν ∈ D+

` (j), then

1− ω(z0, γκν ; Ωj1 ∩ Ω1)

ω(z0, γκν ; Ω1)
∈
[
2−`−1, 2−`

)
implying that

ω(z0, γκν ; Ω1) · 2−`−1 ≤ ω(z0, γκν ; Ω1)− ω(z0, γκν ; Ωj1 ∩ Ω1).
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In addition, the collections {D`(j)} are disjoint. We see that for ηj := ∂ (Ω2 ∩ Ω1) ∩ γκj
∞∑
`=1

2−`#D+
` (j) =

∞∑
`=1

ω(z0, γκj ; Ω1)

ω(z0, γκj ; Ω1)
· 2−`#D+

` (j) =
2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D+

` (j)

ω(z0, γκj ; Ω1) · 2−`−1

≤ 2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D+

` (j)

(
ω(z0, γκν ; Ω1)− ω(z0, γκν ; Ωj1 ∩ Ω1)

)

=
2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D+

` (j)

∫
∂(Ωj1∩Ω1)

ω(ζ, γκν ; Ω1)− ω(ζ, γκν ; Ωj1 ∩ Ω1)dω(z0, ζ; Ωj1 ∩ Ω1)

=
2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D+

` (j)

∫
ηj

ω(ζ, γκν ; Ω1)dω(z0, ζ; Ωj1 ∩ Ω1)

disjointness

of D
+
`

(j)

≤ 2

ω(z0, γκj ; Ω1)

m∑
ν=1

∫
ηj

ω(ζ, γκν ; Ω1)dω(z0, ζ; Ωj1 ∩ Ω1)

disjointness
of γκν=

2

ω(z0, γκj ; Ω1)

∫
ηj

ω

(
ζ,

m⋃
ν=1

γκν ; Ω1

)
dω(z0, ζ; Ωj1 ∩ Ω1)

≤ 2

ω(z0, γκj ; Ω1)

∫
ηj

1dω(z0, ζ; Ωj1 ∩ Ω1) =
2ω(z0, ηj ; Ωj1 ∩ Ω1)

ω(z0, γκj ; Ω1)

≤ 2ω(z0, [φ(aj), φ(bj)] ; Ωj1)

ω(z0, γκj ; Ω1)
≤ n · 4

n1+η
=

4

nη
,

The case of D`(j)
− is shown similarly. This concludes our proof.

———————————————— NOT TO INCLUDE IN PAPER: ————————————————

Recall that by definition of the collections
{
D−` (j)

}
, if ν ∈ D−` (j), then

ω(z0, γκν ; Ωj1 ∪ Ω1)

ω(z0, γκν ; Ω1)
− 1 ∈

[
2−`−1, 2−`

)
implying that

ω(z0, γκν ; Ω1) · 2−`−1 ≤ ω(z0, γκν ; Ωj1 ∪ Ω1)− ω(z0, γκν ; Ω1).

In addition, the collections {D`(j)} are disjoint. We see that

∞∑
`=1

2−`#D−` (j) =

∞∑
`=1

ω(z0, γκj ; Ω1)

ω(z0, γκj ; Ω1)
· 2−`#D−` (j) =

2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D−` (j)

ω(z0, γκj ; Ω1) · 2−`−1

≤ 2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D−` (j)

(
ω(z0, γκν ; Ωj1 ∪ Ω1)− ω(z0, γκν ; Ω1)

)

=
2

ω(z0, γκj ; Ω1)

∞∑
`=1

∑
ν∈D−` (j)

∫
ηj

ω(ζ, γκν ; Ω1)dω(z0, ζ; Ω1)

disjointness

of D
−
`

(j)

≤ 2

ω(z0, γκj ; Ω1)

m∑
ν=1

∫
ηj

ω(ζ, γκν ; Ω1)dω(z0, ζ; Ω1)

disjointness
of γκν=

2

ω(z0, γκj ; Ω1)

∫
ηj

ω

(
ζ,

m⋃
ν=1

γκν ; Ω1

)
dω(z0, ζ; Ω1)

≤ 2

ω(z0, γκj ; Ω1)

∫
ηj

1dω(z0, ζ; Ω1) =
2ω(z0, ηj ; Ω1)

ω(z0, γκj ; Ω1)
≤ 2.
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We are now ready to prove Lemma 5.3. In fact, this will now be a simple computation, based on the relationship

between M±` (j) and D±` (ν) introduced above, (4), and the two observations-

m · 4

nη
=

m∑
ν=1

4

nη

By Obs
5.5

≥
m∑
ν=1

∞∑
`=1

2−`#D+
` (ν) =

m∑
ν=1

∞∑
`=1

2−`
∑

j∈D+
` (ν)

1

Eq. (4)
=

∞∑
`=1

2−`
m∑
j=1

∑
ν∈M+

` (j)

1 =

m∑
j=1

∞∑
`=1

2−`#M+
` (j) ≥

∑
j,ω(z0,γ̃κj ;Ω2)< 1

n1+2η

∞∑
`=1

2−`#M+
` (j)

By Obs
5.4

≥ #

{
j, ω(z0, γ̃κj ; Ω2) <

1

n1+2η

}
·
(

1− 1

nη

)
⇒ #

{
j, ω(z0, γ̃κj ; Ω2) <

1

n1+2η

}
≤ 4m

nη
(
1− 1

nη

) < m

4
,

as long as nη > 17.

A similar computation shows that

#

{
j, ω(z0, γ̃κj ; Ω2) >

1

n1−2η

}
≤ 2m

nη
<
m

4

concluding the proof.

———————————————— NOT TO INCLUDE IN PAPER: ————————————————

2m =

m∑
ν=1

2

By Obs
5.5

≥
m∑
ν=1

∞∑
`=1

2−`#D−` (ν) =

m∑
ν=1

∞∑
`=1

2−`
∑

j∈D−` (ν)

1

Eq. (4)
=

∞∑
`=1

2−`
m∑
j=1

∑
ν∈M−` (j)

1 =

m∑
j=1

∞∑
`=1

2−`#M−` (j) ≥
∑

j,ω(z0,γ̃κj ;Ω2)> 1

n1−2η

∞∑
`=1

2−`#M−` (j)

By Obs
5.4

≥ #

{
j, ω(z0, γ̃κj ; Ω2) >

1

n1−2η

}
· nη

⇒ #

{
j, ω(z0, γ̃κj ; Ω2) >

1

n1−2η

}
≤ 2m

nη
<
m

4
,

Lemma 5.6 For every j, if ω(z0, γ̃κj ; Ω2) > 1
n1+2η then ω(z0, [φ(aj), φ(bj)] ; Ω2) > 1

n1+4η , as long as η is numerically

small enough.

Proof. We shall use the notion of extremal length combined with Whitney cubes. Fix j and let Ij := φ−1
2

(
γ̃κj
)
,

where φ2 : D→ Ω2 is a Riemann map. Let Cj be the Whitney cube generated by the arc Ij , and let Tj := φ2(Cj).

Fix a curve σ connecting z0 with ∂Ω2 \ γ̃κj and let Γ denote the collection of all curves in Ω2 connecting σ with

γ̃κj . We write Γ = Γ1 + Γ2 where 
Γ1 := {γ ∩ (Ω2 \ Tj) , γ ∈ Γ}

Γ2 := {γ ∩ Tj , γ ∈ Γ}
.
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Following the parallel rule (see, e.g., [29, p.136])

1

λΩ2(Γ)
≥ 1

λ(Ω2\Tj)(Γ1)
+

1

λTj (Γ2)
.

Let us bound each of these terms independently. For the first quantity, we use the extension rule, with Ω′ = Ω2

and Γ′ the collection of all curves in Ω2 connecting σ with γ̃κj . Then, following [29, Theorem 5.2 p. 145],

λ(Ω2\Tj)(Γ1) ≤ λΩ2(Γ′) ≤ 1

π
log

(
8

πω(z0, γ̃κj ; Ω2)

)
<

1

π
log

(
8

π · 1
n1+2η

)
.

Next, because the extremal length is conformal invariant, and

diam ([φ(aj), φ(bj)])

diam(γ̃κj )
≥

1
nη diam(γ̃κj )

diam(γ̃κj )
=

1

nη
,

there exists some uniform C > 1 so that

λTj (Γ2) ≤ 1

π
log

(
8

π · C 1
nη

)
.

Combining these estimates we see that

1

λΩ2(Γ)
≥ π

log

(
8

π· 1

n1+2η

) +
π

log
(

8
π·C 1

nη

) =
π

log (n)

(
1

1 + 2η
+

1

η

)
(1− o(1))

⇒ λΩ2
(Γ) ≤ 1 + 3η

π
log (n) (1 + o(1)) ,

since for a, b > 0 we have 1
1
a+ 1

b

≤ a+ b.

Lastly, note that this holds for every σ implying that

ω(z0, [φ(aj), φ(bj)] ; Ω2) ≥ 1

π
e−πλ(z0,[φ(aj),φ(bj)]) ≥ 1

π
e−π

1+3η
π log(n)(1+o(1)) ≥ 1

n1+4η
,

as long as η is numerically small enough.

We conclude that for at least half of the elements in the collection
{
γκj
}

we have

(5)
1

n1+4η
≤ ω (z0, [φ(aj), φ(bj)] ; Ω2) ≤ 1

n1−2η
.

5.2.3 Step 3: The disks

We cover ∂Ω2 \ ]
j satisfies (5)

[φ(aj), φ(bj)] with tangential disks of radius 1
n4 . Denote by P the polygon whose

boundary is the union of lines connecting the tangential points of every two consecutive disks together with

]
j satisfies (5)

[φ(aj), φ(bj)].

Lemma 5.7 For every j satisfying (5)

1

2n1+4η
≤ ω (z0, [φ(aj), φ(bj)] ;P ) ≤ 2

n1−2η
.
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Proof. Note that P ∩ Ω2 ⊆ P ⊆ P ∪ Ω2, then

ω(z0, [φ(aj), φ(bj)] ;P ) =

∫
∂(P∩Ω2)

ω(ζ, [φ(aj), φ(bj)] ;P )dω(z0, ζ;P ∩ Ω2)

= ω(z0, [φ(aj), φ(bj)] ;P ∩ Ω2) +

∫
∂P∩Ω2

ω(ζ, [φ(aj), φ(bj)] ;P )dω(z0, ζ;P ∩ Ω2)

≤ 1

n1−2η
+

∫
∂P∩Ω2

1

n2
dω(z0, ζ;P ∩ Ω2) ≤ 1

n1−2η
+

1

n2
≤ 2

n1−2η

since dH(∂P, ∂Ω2) ≤ 1
n2 and [φ(aj), φ(bj)] 6∈ ∂P ∩ Ω2, then following Beurling for every ζ ∈ ∂P ∩ Ω2 we have

ω(ζ, [φ(aj), φ(bj)] ;P ) ≤
√

1

n4
=

1

n2
.

A similar computation with P ∪ Ω2 shows that ω(z0, [φ(aj), φ(bj)] ;P ) ≥ 1
2n1+4η , concluding the proof.

———————————————— NOT TO INCLUDE IN PAPER: ————————————————

ω(z0, [φ(aj), φ(bj)] ;P ∪ Ω2) =

∫
∂(P∪Ω2)

ω(ζ, [φ(aj), φ(bj)] ;P )dω(z0, ζ;P ∪ Ω2)

= ω(z0, [φ(aj), φ(bj)] ;P ) +

∫
∂P\Ω2

ω(ζ, [φ(aj), φ(bj)] ;P )dω(z0, ζ;P ∪ Ω2)

≤ ω(z0, [φ(aj), φ(bj)] ;P ) +

∫
∂P\Ω2

1

n2
dω(z0, ζ;P ∩ Ω2),

implying that

ω(z0, [φ(aj), φ(bj)] ;P ) ≥ ω(z0, [φ(aj), φ(bj)] ;P ∪ Ω2)− 1

n2
≥ ω(z0, [φ(aj), φ(bj)] ; Ω2)− 1

n2

≥ 1

n1+4η
− 1

n4
≥ 1

2n1+4η
.

For every j satisfying (5), we cover the segment [φ(aj), φ(bj)] with tangential disks of doubling radius starting

from the two disks of radius 1
n4 at the endpoint of the interval, working our way inside. We stop if the radius

exceeds diam(γκj ) · n−η and cover the rest with disks of the same radius. The number of disks used to cover such

a segment is bounded by

# {disks} . log (n) +
diam(γκj )

diam(γκj )n
−η . log(n) + nη ≤ 2nη,

for n large enough.

In particular, if j satisfies (5), one of the disks in the middle of the segment has diameter at least diam(γκj )·n−2η

and by inclusion harmonic measure (with respect to the polygon, P ) at most 1
n1−2η , while by the pigeon-hole

principle, at least one of the disks has harmonic measure

ω(z0, [φ(aj), φ(bj)] ;P )

# {disks}
≥

1
2n1+4η

2nη
=

1

4n1+5η
,
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and diameter less than the diameter of γκj .

Claim 5.8 For every disk, D, in the collection described above, #
{
B,B ∩ 3

2D 6= ∅
}

= 3.

Note that this implies that the only disks in the intersection are the ones tangential to D, which is needed to

define the dynamics on this iterated functions system. In addition, it implies that the segments defining ∂P are

pairwise disjoint, that is P is simply connected.

Proof. Let D,D′ be two disks in the collection and assume without loss of generality that the radius of D, r(D), is

no smaller that the radius of D′. If D′ ∩ 3
2D 6= ∅ then there exist ζ ∈ D, ζ ′ ∈ D′ so that

|ζ − ζ ′| ≤ diam(D′) + diam

(
3

2
D

)
= 5r(D),

and for some z, z′ ∈
(
1− 1

n

)
T, ζ = φ(z), ζ ′ = φ(z′).

We will look at two cases:

Case 1: r(D) = 1
n4 . Then using distortion arguments (see, e.g., [48, Cor 1.5 p.10]),

|ζ − ζ ′| ≥ 1

4
tanh(ρ(z, z′))(1− |z|2) |φ′(z)| ≥ 1

64
ρ(z, z′)(1− |z|)2 =

1

64 · n2
ρ(z, z′)

implying that

ρ(z, z′) ≤ 64 · n2 |ζ − ζ ′| ≤ 320n2 · r(D) = ·320n2

n4
=

320

n2

In other words, as long as n is numerically large enough, z, z′ either belong to the same curve, γk, or to neighbouring

ones. Recall that log φ′ is a Bloch function, implying that

|arg (φ′(z))− arg (φ′(z′))| ≤ |log (φ′(z))− log (φ′(z′))| ≤ 6ρ(z, z′) .
1

n2
.

In particular, the only possibility for such intersection is if D,D′ are tangential, because the disks have the same

radius.

Case 2: If the radius of D is bigger than 1
n4 , then there exists j satisfying (5) so that D sits on a segment

[φ(aj), φ(bj)] with P -harmonic measure at least 1
4n1+5η and diameter bounded by diam(γκj ).

Since log φ′0 is a Bloch function, for every z ∈ [zk, zk+1]

diam(γk) = sup
ζ,η∈[zk,zk+1]

|φ(ζ)− φ(η)| ∼
∫ zk+1

zk

|φ′|d|ζ| ∼ |zk − zk+1| |φ′(z)| ∼ (1− |z|) |φ′(z)| .

In particular,

|φ(z)− φ(z′)| & ρ(z, z′) (1− |z|) |φ′(z)| & ρ(z, z′) · diam(γk).

We conclude that since the disks D are defined so that r(D) ≤ diam(γk) · n−η,

ρ(z, z′) .
|φ(z)− φ(z′)|
diam(γk)

≤ 5r(D)

diam(γk)
.

1

nη
.
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If the disks are not tangential, then the part of ∂Ω1 between D and D′ cannot be a graph, in particular, the

argument has to shift by at least ±π2 , that is

π

2
≤ |arg (φ′(z))− arg (φ′(z′))| ≤ 6ρ(z, z′) .

1

nη
< 1,

if n is numerically large enough. As before, the only possibility for such intersection is if D,D′ are tangential,

because the ratio between their radii is in the set
{

1, 1
2 , 2
}

.

Theorem 5.9 Let Ω0 ⊂ C be a simply connected domain, and fix α > 0, η > 0 small enough (depending on α), and

δ small enough (depending on α and η). Then there exists a polygon P and collection of tangential disks {D}D∈P

covering ∂P with #
{
D ∩ 3

2D
′ 6= ∅

}
= 3 so that

N+
P (δ, α, η (5α+ 12)) & N+

Ω0
(δ, α, η).

Proof. Given δ, η we define n := dδ−α−2ηe ∈
[
δ−α−2η, δ−α−2η + 1

]
. Let {Bj}

NΩ0 (δ,α;η)
j=1 be the maximal collection of

disks defining N+
Ω0

(δ, α; η). Following Carleson’s lemma (see, e.g., [29, Lemma 2.5 p.277]) for every j there exists a

continuum βj ⊂ 2Bj ∩ ∂Ω0 with harmonic measure exactly δα+2η. By excluding a fixed linear portion of the disks

in the collection {Bj}, we may assume that {2Bj} are pairwise disjoint. Define wj :=
(
1− 1

n

)
ζj , where ζj is the

centre of the arc φ−1
0 (βj) ⊂ T. Let Ω1 = φ (D) be as in the statement of Theorem 5.2 and note that as wj ∈ ∂Ω1

therefor there exists κj so that wj ∈
[
zκj , zκj+1

]
. We will show that diam(γκj ) . diam(βj).

diam(γκj ) := sup
ζ,η∈[zκj ,zκj+1 ]

|φ(ζ)− φ(η)| = sup
ζ,η∈[zκj ,zκj+1 ]

|φ′(ξζ,η)| |ζ − η| . |φ′(wj)|
∣∣zκj − zκj+1

∣∣
∼ |φ′0(wj)|

∣∣zκj − zκj+1

∣∣ ∼ dist(φ0(wj), ∂Ω0)

1− |wj |2
∣∣zκj − zκj+1

∣∣ . diam(βj),

by Observation 3.3 part 1.

Next, because βj are disjoint, and have harmonic measure δα+2η, then the arcs φ−1
0 (βj) are disjoint and have

length δα+2η. In particular, for every k fixed, the number of such continuums intersecting γk is bounded by

λ1(
[
zκj , zκj+1

]
)

λ1(φ−1
0 (βj))

=
ω(z0, γκj ; Ω1)

ω(z0, βj ; Ω0)
≤

1
n

δα+2η
≤ 2.

By again excluding a linear portion of the disks left in the collection, we may assume the correspondence j 7→ κj

is one to one. Let m ∈ N be the maximal number of disks in the collection satisfying that j 7→ κj is a one to one

map. Because we only excluded a liner portion of the disks, m ∼ N+
Ω0

(δ, α; η).

We now apply Theorem 5.2 to the collection
{
γκj
}

to get a polygon P whose boundary is covered by a collection

of disjoint disks satisfying #
{
D ∩ 3

2D
′ 6= ∅

}
= 3 and property (2a). In particular, every such disk is counted in

N+
P (δ, α, η (5α+ 12)) and therefore we get that N+

P (δ, α, η (5α+ 12)) & m ∼ N+
Ω0

(δ, α, η) concluding the proof.

As for the Minkowski distortion spectrum, we will show that Ω0 can be approximated by a polygon, P , with a

large lower bound on #ΓP (a′, r).
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Theorem 5.10 Let Ω0 ⊂ C be a simply connected domain, and fix a > 0, η small enough (depending on a), and

ε ∈ (0, 1) small enough (depending on a and η). Then there exist a polygon P and collection of tangential disks

{D}D∈P covering ∂P with #
{
D ∩ 3

2D
′ 6= ∅

}
= 3 so that

#ΓΩ0
(a, r) . #ΓP (a′, r′)

where (1− r′) = (1− r)(1+5η) and a′ = a (1 +O(η)).

Proof. Let n =
⌈

1
1−r

⌉
∈
[

1
1−r ,

1
1−r + 1

]
, and

{
γκj
}m
j=1

be the maximal number of arcs so that for every j there

exists γ ∈ Γ(a′, r) so that
(
1− 1

n

)
A(γ) ∩ γκj 6= ∅. Since the intersection if non-empty and they both sit at the

same distance from the boundary, by the fact that log φ′ is Bloch, they have comparable length, implying that this

correspondence is finite to finite, and be excluding a linear portion of the curves in ΓΩ0
(a, r) we are left with a one

to one correspondence.

Then we count curves γκj with diam(γκj ) ≥ (1− r)1−a′
. Recall that on

(
1− 1

n

)
A(γ) we have |φ′0| & na and so

if ζ0 ∈
(
1− 1

n

)
A(γ) ∩ γκj then

length(γκj ) =

∫ zκj+1

zκj

|φ′(ζ)|d|ζ| ∼
∣∣zκj − zκj+1

∣∣ ∣∣φ′(zκj )∣∣ ∼ ∣∣zκj − zκj+1

∣∣ |φ′0(ζ0)|

&
na

n
∼ (1− r)1−a

.

In particular, diam(γκj ) > (1− r)1−a+η
for r close enough to 1.

We now apply Theorem 5.2 to the collection
{
γκj
}

to get a polygon P whose boundary is covered by a collection

of disjoint disks satisfying #
{
D ∩ 3

2D
′ 6= ∅

}
= 3 and property (2a). In particular, by defining r′ = (1− r)1+5η

,

every such curve is counted in #ΓP (a′, r′) for a′ = a (1 +O(η)), and therefore we get that #ΓP (a′, r′) & #ΓΩ0
(a, r)

concluding the proof.

5.3 Iterated Function Systems

Lemma 5.11 Let P be a symmetric polygon and assume that there is a collection of tangential disks {Dj} satisfying

that for every disk, D,

1. For every k, #
{
j,Dj ∩ 3

2Dk 6= ∅
}

= 3.

2. ∂P ∩Dj is a line segment.

3. The disks intersecting the real axis and their neighbours have radius 1
n2 .

Then there exists an iterated functions system , ΩF , defined by a collection of open sets {Uj} covering ∂P and a

collection of maps {ϕj} satisfying that for every k
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1. The extremal distance between ∂ΩF ∩Dk and ∂Uk in Uk is uniformly bounded from above and bellow by 1
M

and M respectively, where M is some numerical constant.

2.

ω(z0, `k;P ) . ω(z0, Dk ∩ ∂ΩF ; ΩF ) +
1

n
.

Proof. Let γ+ denote the top part of ∂P , γ− the horizontal symmetrization of γ+ and include the disks intersecting

the real line, denoted DjL , DjR , i.e., these two disks are included in both curves.

To define the dynamics we need to ‘go one level down’, i.e., to place inside each disk a rescaled and rotated

copy of the disks covering γ+ (or γ− if the disk covers γ−). Note that since every two consecutive disks the ratio

between their radii is in the set
{

1
2 , 1, 2

}
then the line connecting their tangent points has length comparable with

the radius of the disk. We denote by Djk the copy of Dk inside Dj , and define the collection of domains and maps

on the domains {Ujk} where Ujk = 3
2Djk. Note that following the the first property of the polygon, P , every

such domain only intersects three disks, Djk and its neighbouring disks. To define Fjk : Ujk → Ω we look at two

cases- if k 6∈ {jR, jL}, then Fjk is rescaling and rotating mapping Djk onto Dk and its neighbours to themselves. If

k ∈ {jL, jR}, then we need to adjust our construction as these are our endpoints. We map the centre of the disk to

the center of DjL (or DjR) and the two tangent points to the tangent points of DjL (or DjR) with its neighbours.

The boundary is mapped to the boundary, because Mobiüs maps preserve angles.

Figure 11

In addition, due to the first property of the polygon, P , combined with the fact that diam(∂P ∩Dj) ∼ diam(Dj)

implies that for every j the extremal distance between ∂ΩF ∩Dj and ∂Uj in Uj is uniformly bounded from above
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satisfying the first property.

To see the second property holds let U denote the domain bounded by the collection of disks ]
j,k
Djk, and let

P0 := P \
⋃m
k=1 (DkjL ∪DkjR). We will first show that P0 ⊂ U , in other words, if you add to U each copy of the

end-point disks, then we cover P . Note that, by definition, ∂ΩF ⊂ ]
j,k
Djk and therefore P0 ⊆ U ⊆ ΩF .

Note that since P is symmetric and satisfy property 1, then the only disks intersecting the real line are the

end-point disks. Let `j = ∂P ∩Dj . Then when rescaling and rotating γ+ to fit along `j , the disks Djk, covering it,

only intersects `j at the end-points. In other words, P0 = P \
⋃m
k=1 (DkjL ∪DkjR) ⊂ U .

Now for every k,

ω(z0, `k;P ) =

∫
∂P0

ω(ζ, `k;P )dω(z0, ζ;P0) = ω(z0, `k \ (DkjL ∪DkjR) ;P0) +

∫
⋃m
ν=1(∂DνjL∪∂DνjR)

ω(ζ, `k;P )dω(z0, ζ;P0)

≤ ω(z0, `k \ (DkjL ∪DkjR) ;P0) +

∫
⋃m
ν=1(∂DνjL∪∂DνjR)

1

n
dω(z0, ζ;P0)

≤ ω(z0, `k \ (DkjL ∪DkjR) ;P0) +
1

n
,

by Beurling’s projection theorem.

A similar computation will give us:

ω(z0, Dk ∩ ∂ΩF ; ΩF ) ≥ ω(z0, Dk ∩ ∂ΩF ;U ∪ (ΩF ∩Dk)) ≥
∫
∂P0

ω(ζ,Dk ∩ ∂ΩF ;U ∪ (ΩF ∩Dk))dω(z0, ζ, P0)

≥
∫
`k\(DkjL∪DkjR)

ω(ζ,Dk ∩ ∂ΩF ;U ∪ (ΩF ∩Dk))dω(z0, ζ, P0)

≥ ω(z0, `k \ (DkjL ∪DkjR) ;P0) · inf
ζ∈`k\(DkjL∪DkjR)

ω(ζ,Dk ∩ ∂ΩF ;U ∪ (ΩF ∩Dk))

≥ c · ω(z0, `k \ (DkjL ∪DkjR) ;P0),

for some uniform c ∈ (0, 1) again, by Beurling’s projection theorem. Note that c is uniform because we know that

Dk does not contain any other part of the boundary. Overall, we see that

ω(z0, Dk ∩ ∂ΩF ; ΩF ) +
1

n2
≥ c

(
ω(z0, `k \ (DkjL ∪DkjR) ;P0) +

1

n

)
≥ c · ω(z0, `k;P ),

concluding our proof.

Remark 5.12 By placing rescaled copies of γ− along parts of γ+ and rescaled copies of γ+ along parts of γ− and

using symmetric arguments as the ones above, one can create an iterated functions system with the second property

being replaced by

ω(z0, `k;P ) & ω(z0, Dk ∩ ∂ΩF ; ΩF )− 1

n
.
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The next lemma is a refinements of Carleson’s estimate on the multiplicative constants of iterated functions

systems. It is a quantified version that will allow up to propagate the ‘good disks’ used to define N(δ, α, η) into

smaller scales with a uniform error.

Definition 5.13 We say an iterated functions system expands at rate at least D > 1 if for every mapping in

the system inf
Uj

∣∣F ′j∣∣ ≥ D. Equivalently, for every disk of radius r, B, in Uj, diam(F−1
j (B)) ≤ r

D .

Lemma 5.14 (Refined Carleson’s estimate) Let F be an iterated functions system expanding at rate at least D > 1,

and let Qj := Uj ∩ΩF , where {Uj} are the neighbourhoods where Fj are defined. Assume that the extremal distance

between ∂j and ∂Qj ∩ΩF in Qj is uniformly bounded from above and bellow by 1
M and M respectively. Then there

exists a constant C which depends only on M , so that∣∣∣∣ω (XY Z)

ω (XY )
· ω(Y )

ω (Y Z)
− 1

∣∣∣∣ ≤ C · ( 1

D

)|Y |−1

.

We relay on Makarov’s proof in [44, p.52-53].

Proof. Let g : ΩF → RD be a conformal map mapping z0 to the origin for some R large. Without loss of generality

we choose R large enough so that for every j, λ1(g(∂j)) ≥ 1. For every j we denote by Gj = g(Qj), αj = g(∂j),

and σj = g(∂Qj ∩ ΩF ). Let hj : Gj → D+ be a conformal map which maps σj to T+ and the centre of αj to the

origin. We then choose νj := g−1
(
h−1
j

(
i
2

))
∈ Qj , and denote by α̃j = hj(αj).

Let X = (x1, · · · , xn) be a cylinder in our system. We denote by QX = F−1
x1
◦ F−1

x2
◦ · · · ◦ F−1

xn−1
Qxn , and by

λX = F−1
x1
◦ F−1

x2
◦ · · · ◦ Fxn−1

λxn . We will show that∣∣∣∣∣ω(XY Z)

ω(XY )
·
(
ω (νXy1 , ∂XY Z ;QXy1)

ω (νXy1
, ∂XY ;QXy1

)

)−1

− 1

∣∣∣∣∣ .
(

1

D

)|Y |−1

,

where the constant only depends on M . The same holds for ω(Y Z)
ω(Y ) and

ω(νy1 ,∂Y Z ;Qy1)
ω(νy1 ,∂Y ;Qy1)

and as the second components

are equal by conformal invariance of harmonic measures, this will conclude the proof.

Let G = g(QXy1) and define hX : G→ D+ by hX(z) := hy1

(
g ◦ F−1

X ◦ g−1
)
. Note that by definition,

hX ◦ g(νXy1) =
i

2
, hX ◦ g(∂Xy1

) = α̃y1
, and hX (σXy1

) = T+.

Denote by α := g(∂Xy1
), β := g(∂XY ), γ := g(∂XY Z) and by α̃, β̃, and γ̃ the images of α, β, and γ under hX .

Since harmonic measure is conformal invariant,

ω(XY Z)

ω(XY )
=
ω(0, γ;RD)

ω(0, β;RD)
=
λ1 (γ)

λ1 (β)
, and

ω (νXy1
, ∂XY Z ;QXy1

)

ω (νXy1 , ∂XY ;QXy1)
=

ω
(
i
2 , γ̃;D+

)
ω
(
i
2 , β̃;D+

) .
We will first show that ∣∣∣∣∣∣∣

λ1 (γ)

λ1 (β)

 λ1 (γ̃)

λ1

(
β̃
)
−1

− 1

∣∣∣∣∣∣∣ .
(

1

D

)|Y |−1

,
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with a constant depending only on M .

Let Ĝ denote the symmetrization of G across α. Consider ĥX as a map from the symmetrization, ĥX : Ĝ→ D.

Because extremal distance is conformal invariant, and the extremal distance between ∂y1 and ∂Qy1 ∩Ω is assumed

to be bounded between 1
M and M , the domain Ĝ and the compact set α satisfy the requirement of claim ??. We

conclude that

|h′(ζ)| � 1, |h′′(ζ)| � 1, ∀ζ ∈ α,

and the constants depends on M alone. Then

λ1

(
β̃
)

=

∫
β

|h′(ζ)| d |ζ| �
∫
β

1d |ζ| = λ1 (β) = ω

(
i

2
, β̃;D+

)
= ω (νXy1

, ∂XY ;QXy1
) = ω (νy1

, ∂Y ;Qy1
) .

Fix ζ0 ∈ γ, then

∣∣∣λ1

(
β̃
)
− λ1 (β) |h′(ζ0)|

∣∣∣ =

∣∣∣∣∣∣∣
∫
β

|h′(ζ)| d |ζ| − λ1 (β) |h′(ζ0)|

∣∣∣∣∣∣∣ ≤
∫
β

|h′(ζ)− h′(ζ0)| d |ζ| =
∫
β

|h′′(ξζ)| |ζ − ζ0| d |ζ| . λ1 (β)
2

⇒
∣∣∣λ1 (β)

−1
λ1

(
β̃
)
− |h′(ζ0)|

∣∣∣ ≤ Cλ1 (β) .

The same argument done with the curve γ shows that∣∣∣λ1 (γ)
−1
λ1 (γ̃)− |h′(ζ0)|

∣∣∣ ≤ Cλ1 (γ) .

This implies that∣∣∣∣∣∣∣
λ1 (γ)

λ1 (β)

 λ1 (γ̃)

λ1

(
β̃
)
−1

− 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
λ1

(
β̃
)
λ1 (β)

−1

λ1 (γ̃)λ1 (γ)
−1 − 1

∣∣∣∣∣∣ ≤
∣∣∣∣ |h′(ζ0)|+ Cλ1 (β)

|h′(ζ0)| − Cλ1 (γ)
− 1

∣∣∣∣ =
C (λ1 (β) + λ1 (γ))

|h′(ζ0)| − Cλ1 (γ)
. λ1 (β) ,

where the constant depends only on M . To conclude this part of the proof it is left to show that λ1(β) .
(

1
D

)|Y |−1

with a constant depending only on M .

We note that since the extremal distance between i
2 and ∂D+ is some constant (for definition see [29, p.144

bottom]), then extremal distance between ∂Qy1
and νy1

is uniformly bounded from above and bellow by some

uniform constants as a conformal image of the half disk. This implies that for every arc in the boundary of ∂Qy1
,

ω (νy1
, A;Qy1

) . λ1(A)
diam(Qy1 ) , where the constant is a numerical constant. Overall

λ1 (β) ∼ ω
(
i

2
, β̃;D+

)
= ω (νXy1 , ∂XY ;QXy1) = ω (νy1 , ∂Y ;Qy1) ∼ λ1 (∂Y )

diam(Qy1
)

=
λ1

(
F−1
yn ◦ · · · ◦ F

−1
y2
∂y1

)
diam(Qy1

)
.

(
1

D

)|Y |−1

,

where the constant depends on M alone.

To conclude the proof, it is left to show that∣∣∣∣∣∣ λ1 (γ̃)

λ1

(
β̃
) :

ω
(
i
2 , γ̃;D+

)
ω
(
i
2 , β̃;D+

) − 1

∣∣∣∣∣∣ .
(

1

D

)|Y |−1

.
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Let φ : D+ → D be a conformal map, mapping i
2 to the origin, and T+ to itself. Then for every arc A ⊂ ∂D+,

ω

(
i

2
, A;D+

)
= ω(0, φ(A);D) = λ1(φ(A)).

Now, φ is a fixed Möbius map, and therefore its second derivative is uniformly bounded as a function of the distance

of α̃ from ±1, which is equal (up to a uniform constant) to the extremal distance between ∂y1
and ∂Qy1

∩ Ω, in

Qy1
, in other words, it depends on M . Fix ζ̃0 ∈ γ̃, then , as before, for every arc A containing γ̃,

∣∣∣λ1(φ(A))− λ1(A)
∣∣∣φ′(ζ̃0)

∣∣∣∣∣∣ ≤ ∫
A

∣∣∣|φ′(ζ)| −
∣∣∣φ′(ζ̃0)

∣∣∣∣∣∣ d |ζ| ≤ ∫
A

∣∣∣φ′(ζ)− φ′(ζ̃0)
∣∣∣ d |ζ|

=

∫
A

|φ′′(ξζ)|
∣∣∣ζ − ζ̃0∣∣∣ d |ζ| . λ1(A)2,

where the constant only depends on the the bounds we had for the second derivative, which in turn depends on M .

Overall,∣∣∣∣∣∣∣
ω
(
i
2 , γ̃;D+

)
ω
(
i
2 , β̃;D+

) ·
 λ1 (γ̃)

λ1

(
β̃
)
−1

− 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
λ1(φ(γ̃))

λ1(φ(β̃))
·

 λ1 (γ̃)

λ1

(
β̃
)
−1

− 1

∣∣∣∣∣∣∣ ≤
(
λ1(γ̃)

∣∣∣φ′(ζ̃0)
∣∣∣+ λ1(γ̃)2

)
λ1 (γ̃)

−1(
λ1(β̃)

∣∣∣φ′(ζ̃0)
∣∣∣+ λ1(β̃)2

)
λ1

(
β̃
)−1 − 1

≤

∣∣∣φ′′(ζ̃0)
∣∣∣−1 (

λ1(γ̃) + λ1(β̃)
)

1 +
∣∣∣φ′′(ζ̃0)

∣∣∣−1

λ1(β̃)
. λ1(β̃) . λ1(β) .

(
1

D

)|Y |−1

,

and the constants, as before, only depend on M .

5.3.1 Minkowski dimension spectrum and Minkowski distortion spectrum of words

One way to describe an iterated functions system is to use symbolic dynamics. Let ϕ : W → ∂Ω be the map

taking infinite words (from the set W ) into their corresponding points in ∂Ω. We shall abuse the notation of F

to denote the domain generated by the system F . For a cylinder set [a1, · · · , ak] we interpret ϕ[a1, · · · , ak] :={
ζ ∈ ∂Ω, ϕ−1(ζ) ∈ [a1, · · · , ak]

}
or in other words, it is the collection of points in ∂Ω whose ‘word’ description

begins with the letters a1, · · · , ak. Let d := min
a∈Σ

diam(ϕ[a]), D := max
a∈Σ

diam(ϕ[a]).

We would like to present similar definitions for the dimension and the distortion spectrums in the context of

words.

5.3.1.1 Definitions: Let Σ = {a1, · · · , aN} denote the finite alphabet used in the symbolic dynamics description

of our iterated functions system. We abuse the notation of diameter and harmonic measure of words by defining

diam(aj) = diam(ϕ[aj ]) and ω(aj) = ω(z0, ϕ([aj ]);F ), and denote by |w| the length of the word w.

Given m ∈ N we denote by

I [m] :=

(k1, · · · , kN );

N∑
j=1

kj = m, kj ∈ N ∪ {0}

 .
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Given a sequence (k1, · · · , kN ) ∈ I [m] we say w = (w1, · · · , wm) ∈W (k1,··· ,kN ) if for every 1 ≤ j ≤ N

# {ν, wν = aj} = kj .

Definition 5.15 We define the Minkowski word upper dimension spectrum by

f+word
Ω (α) = lim

η→0
lim sup
m→∞

sup
(k1,··· ,kN )∈I[m]

logN+
word((k1, · · · , kN ), α, η)
N∑
j=1

kj log(diam(aj))

,

where N+
word((k1, · · · , kN ), α, η) is the maximal number of disjoint words w ∈W (k1,··· ,kN ) satisfying that

ω(z0, ϕ[w];F ) ≥
N∏
j=1

diam(aj)
kj(α+η).

Similarly, we define the Minkowski word lower dimension spectrum by

f−wordΩ (α) = lim
η→0

lim sup
m→∞

sup
(k1,··· ,kN )∈I[m]

logN−word((k1, · · · , kN ), α, η)
N∑
j=1

kj log(diam(aj))

,

where N−word((k1, · · · , kN ), α, η) is the maximal number of disjoint words w ∈W (k1,··· ,kN ) satisfying that

ω(z0, ϕ[w];F ) ≤
N∏
j=1

diam(aj)
kj(α−η)

Note that by using dcurve instead of d, there is no reason to define an equivalent dword as it is just the same.

For our convenience we shall define the collection of curves

Γ(a, (k1, · · · , kn)) = Γ

a, 1− n∏
j=1

diam(aj)
kj

1−a

 .

5.3.1.2 Consistency:

Lemma 5.16 Let F be a finite iterated functions system. Then

1. f+word
F (α) = f+

F (α).

2. f−wordF (α) = f−F (α).

Proof. We will first show that there is a one to one correspondence between good disks and good words. Because

the harmonic measure of a finite iterated functions system is doubling, it is clear that if a word is good, then

there exists a disk of double the diameter which is good with bounded multiplicative error. To see the reverse

correspondence, fix r > 0 and let B be a good disk of diameter r. We will show that for every η and every r small

enough (depending on η and the domain) there exists a finite word (or a cylinder) [w0]k0 so that

1. r1+η ≤ diam(ϕ([w0]k0)) ≤ r.
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2. ω(B)1+2η ≤ ω(ϕ([w0]k0)) ≤ ω(B)1−η.

Because the harmonic measure of a finite iterated functions system is doubling, we may assume without loss of

generality that there exists an infinite word so that ϕ(w0) is the centre of the disk, B (otherwise because this

correspondence is defined almost surely, we can shift the disk slightly and change the harmonic measure by at most

a constant). Let

kmin := min {ν ∈ N, diam(ϕ([w0]ν0)) ≤ r} .

On one hand,

r ≥ diam(ϕ([w0]k0)) ≥ diam(ϕ([w0]k−1
0 )) · min

1≤j≤N
diam(aj) > r · d = r1+η

as long as r is small enough (depending on η and d). On the other hand, because w0 ∈ D ∩ ϕ([w0]k0), then

2D = B(ϕ(w0), 2r) ⊇ B(ϕ(w0), 2diam(ϕ([w0]k−1
0 ))) ⊇ ϕ([w0]k0).

Because the harmonic measure is doubling this implies that

ω(ϕ([w0]k0)) ≤ ω(2B) ∼ ω(B).

Similarly,

ϕ([w0]k0) ⊇ B
(
ϕ(w0),

1

2
· diam(ϕ([w0]k−1

0 ))

)
⊇ B

(
ϕ(w0),

1

2
r1+η

)
,

which implies that

ω(ϕ([w0]k0)) & ω(B)1+η,

Now, it is left to note that every sequence δν ↘ 0 corresponds to a sequence of configurations (kν1 , · · · kνN ) ∈ I [mν ]

satisfying 1 and 2 and vise-verse concluding the proof.

5.3.1.3 Propagation:

Definition 5.17 Let Ω ⊂ C be a domain. We say Ω propagates the function ϕ(δ, α, η) if there exists a constant

C, so that for every δ small enough (which may depend on η, α and the domain, Ω), and for every n ∈ N

logϕ
(
δ2n , α, C · η

)
log
(

1
δ2n

) ≥ logϕ(δ, α, η)

log
(

1
δ

) .

The first observation is that for iterated functions systems, the functions N±word and #Γ propagate, making

this property interesting.

Observation 5.18 Let F be a finite iterated functions system. Fix m ∈ N and (k1, · · · , kN ) ∈ I [m], and define

δ :=
N∏
j=1

diam(aj)
nj .

1. The function N±word((k1, · · · , kN ), α, η) propagates.
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2. The function #Γ(a, (k1, · · · , kN )) propagates.

In both cases the constant C is a constant that will depend on the constant from Carleson’s Lemma, Lemma 5.14.

Proof. We will show the proof for f+words the other two cases are identical.

For every ν we define the configuration (ν · k1, ν · k2, · · · , ν · kN ) ∈ I [ν·m]. Let w1, w2, · · · , wν ∈ W (k1,··· ,kN ) be

so that for every `

ω(z0, ϕ[w`];F ) ≥
N∏
j=1

diam(aj)
kj(α+η).

For every ν ∈ N for every word w = w1w2 · · ·wν we have

ω(z0, ϕ[w];F ) ≥ A−ν
ν∏
`=1

ω(z0, ϕ[w`];F ) > A−ν
ν∏
`=1

N∏
j=1

diam(aj)
kj(α+η) = A−ν

N∏
j=1

diam(aj)
kj ·ν(α+η)

≥
N∏
j=1

diam(aj)
kj ·ν(α+η+D

m ) >

N∏
j=1

diam(aj)
kj ·ν(α+Cη)

where A is the constant from Lemma 5.14, D and C are constants depending on A, and the last inequality holds

for all m large enough (depending on η and A).

The next lemma shows that because the functions N+word and #Γ propagate with constants that depend on

the modulus ∂j := ∂F ∩Dj and ∂
(

3
2Dj ∩ ΩF

)
in 3

2Dj then (1) and (2) hold, concluding the proof of Theorem 2.4.

Lemma 5.19 (1) holds. (2) holds.

Proof. (1) holds: Fix ε > 0 and let Ω be a domain satisfying f+
Ω (α) > F (α)− ε. There exists η0 > 0 and δ0 > 0

small enough satisfying that log
(
N+

Ω (δ, α, η)
)
> (F (α)− ε) log

(
1
δ

)
. Let P be the polygon constructed in Theorem

5.9 and let F be the iterated functions system constructed from P in Lemma 5.11. Then,

N+
P (δ0, α, η0 (5α+ 12)) & N+

Ω (δ0, α, η0),

and Observation 5.18 implies that for every ν ∈ N and every η > 0

N+
F (δν0 , α+ C · η0 (5α+ 12) , η) = N+

F (δν0 , α+ η, C · η0 (5α+ 12))

≥
(
N+
F (δ0, α+ η, η0 (5α+ 12))

)ν ≥ (A ·N+
Ω (δ0, α, η0)

)ν
.

Then for every η0 fixed

f+
F (α+ C · η0 (5α+ 12)) = lim

η→0
lim sup
δ→0

log
(
N+
F (δ, α+ C · η0 (5α+ 12) , η)

)
log
(

1
δ

)
≥ lim
η→0

lim sup
ν→∞

log
(
N+
F (δν0 , α+ C · η0 (5α+ 12) , η)

)
ν log

(
1
δ0

) ≥ lim
η→0

lim sup
ν→∞

log
((
A ·N+

Ω (δ0, α, η0)
)ν)

ν log
(

1
δ0

)
= lim
η→0

lim sup
ν→∞

log
(
N+

Ω (δ0, α, η0)
)

log
(

1
δ0

) +
log(A)

log
(

1
δ0

) ≥ F (α)− 2ε,
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assuming δ0 was numerically small enough. To conclude the proof we note that f+ is upper semi-continuous. This

combined with the fact that C is a uniform constant, gives that

sup
F IFS

f+
F (α) ≥ sup

F IFS
lim
α′↘α

f+
F (α′) ≥ sup

F IFS
lim
η0→0

f+
F (α+ C · η0 (5α+ 12)) ≥ F (α)− 2ε.

(2) holds: Fix a > 0, ε > 0 and let Ω be a domain satisfying dΩ(a) > D(a)− ε. There exists a′ > a close enough

and r close enough to 1 satisfying that

dΩ(a) ≤ log (#Γ (a′, r))

log
(

1
1−r

) + ε

Let P be the polygon constructed in Theorem 5.10 and let F be the iterated functions system constructed from

P in Lemma 5.11. Then, #ΓP (a′′, r′) & #ΓΩ0
(a′, r) with a′′ = a (1 +O(|a− a′|)), 1 − r′ = (1 − r)1+5|a−a′|, and

following Observation 5.18

dcurvesF (a′′) =
log (#ΓP (a′′, r′))

log
(

1
1−r′

) ≥ log (#ΓΩ0
(a′, r))

log
(

1
1−r

) (1−O(|a− a′|)) .

Since this is true with uniform constants, we see that for every ε > 0 and for every a′ > a,

sup
F IFS

dF (a) = lim
a′′→a

sup
F IFS

dF (a′′) = sup
F IFS

dcurveF (a′′) ≥ log (#ΓΩ0
(a′, r))

log
(

1
1−r

) (1−O(|a− a′|)) ≥ D(a)− 2ε,

as d is upper semi-continuous for a > 0, concluding the proof.
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[6] Eric Bedford and B. A. Taylor. Fine topology, Šilov boundary, and (ddc)n. J. Funct. Anal., 72(2):225–251, 1987.

48



[7] Arne Beurling. The collected works of Arne Beurling. Vol. 1. Contemporary Mathematicians. Birkhäuser Boston
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